These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32058893)

  • 41. Prediction of the adsorption capacity for volatile organic compounds onto activated carbons by the Dubinin-Radushkevich-Langmuir model.
    Hung HW; Lin TF
    J Air Waste Manag Assoc; 2007 Apr; 57(4):497-506. PubMed ID: 17458469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Characteristics of Industrial VOCs Emission Sources and Control Technology Application in a Prefecture-level City Region-Based on Qinhuangdao City].
    Hu XR; Hu XY; Wang C
    Huan Jing Ke Xue; 2018 Jul; 39(7):3096-3101. PubMed ID: 29962131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.
    Huang B; Lei C; Wei C; Zeng G
    Environ Int; 2014 Oct; 71():118-38. PubMed ID: 25016450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toluene, Methanol and Benzaldehyde Removal from Gas Streams by Adsorption onto Natural Clay and Faujasite-Y type Zeolite.
    Zaitan H; Mohamed EF; Valdés H; Nawdali M; Rafqah S; Manero MH
    Acta Chim Slov; 2016 Dec; 63(4):798-808. PubMed ID: 28004102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance.
    Huang CY; Song M; Gu ZY; Wang HF; Yan XP
    Environ Sci Technol; 2011 May; 45(10):4490-6. PubMed ID: 21500773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption of volatile organic compounds onto natural porous minerals.
    Zhang G; Liu Y; Zheng S; Hashisho Z
    J Hazard Mater; 2019 Feb; 364():317-324. PubMed ID: 30384241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Study on volatile organic compounds emission of straw combustion and management countermeasure in Wuhan city].
    Huang BJ
    Huan Jing Ke Xue; 2013 Dec; 34(12):4543-51. PubMed ID: 24640888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Volatile Organic Compounds(VOCs) Source Profiles of Industrial Processing and Solvent Use Emissions: A Review].
    Wang HL; Yang ZX; Jing SA
    Huan Jing Ke Xue; 2017 Jun; 38(6):2617-2628. PubMed ID: 29965385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. VOCs absorption from gas streams using deep eutectic solvents - A review.
    Makoś-Chełstowska P
    J Hazard Mater; 2023 Apr; 448():130957. PubMed ID: 36860043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insights into the role of VOCs properties on thermal desorption behaviors of two porous polymeric resins.
    Liu H; Yu Y; Long C
    Environ Pollut; 2024 May; 348():123879. PubMed ID: 38548161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds.
    Long C; Liu P; Li Y; Li A; Zhang Q
    Environ Sci Technol; 2011 May; 45(10):4506-12. PubMed ID: 21488665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability.
    Wang H; Tang M; Zhang K; Cai D; Huang W; Chen R; Yu C
    J Hazard Mater; 2014 Mar; 268():115-23. PubMed ID: 24486614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption.
    Shen Y; Zhang N
    Bioresour Technol; 2019 Jun; 282():294-300. PubMed ID: 30875597
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.
    Cheng Y; He H; Yang C; Zeng G; Li X; Chen H; Yu G
    Biotechnol Adv; 2016 Nov; 34(6):1091-1102. PubMed ID: 27374790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery.
    Peng Y; Zhu P; Zou Y; Gao Q; Xiong S; Liang B; Xiao B
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonporous Adaptive Crystals of Pillararenes.
    Jie K; Zhou Y; Li E; Huang F
    Acc Chem Res; 2018 Sep; 51(9):2064-2072. PubMed ID: 30011181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism.
    Chang T; Wang Y; Wang Y; Zhao Z; Shen Z; Huang Y; Veerapandian SKP; De Geyter N; Wang C; Chen Q; Morent R
    Sci Total Environ; 2022 Jul; 828():154290. PubMed ID: 35248631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cooperative and Bifunctional Adsorbent-Catalyst Materials for In-situ VOCs Capture-Conversion.
    Mondal SK; Aina P; Rownaghi AA; Rezaei F
    Chempluschem; 2024 May; 89(5):e202300419. PubMed ID: 38116915
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functionalized Activated Carbon for Competing Adsorption of Volatile Organic Compounds and Water.
    Guo X; Li X; Gan G; Wang L; Fan S; Wang P; Tadé MO; Liu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56510-56518. PubMed ID: 34788539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of adsorbate molecular space conformation on the adsorption capacity of porous carbon materials: A case study of propylene glycol methyl ether.
    Chai X; Song X; He H; Fan H; Liang D
    Sci Total Environ; 2020 Apr; 712():135495. PubMed ID: 32050390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.