These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32058905)

  • 1. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept.
    Pachón ER; Mandade P; Gnansounou E
    Bioresour Technol; 2020 May; 303():122946. PubMed ID: 32058905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative environmental Life Cycle Assessment of integral revalorization of vine shoots from a biorefinery perspective.
    Gullón P; Gullón B; Dávila I; Labidi J; Gonzalez-Garcia S
    Sci Total Environ; 2018 May; 624():225-240. PubMed ID: 29253771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?
    Farzad S; Mandegari MA; Guo M; Haigh KF; Shah N; Görgens JF
    Biotechnol Biofuels; 2017; 10():87. PubMed ID: 28400858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars.
    Forte A; Zucaro A; Fagnano M; Fierro A
    Sci Total Environ; 2017 Nov; 598():365-376. PubMed ID: 28448928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill.
    Ali Mandegari M; Farzad S; Görgens JF
    Bioresour Technol; 2017 Jan; 224():314-326. PubMed ID: 27816352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.
    Parajuli R; Knudsen MT; Birkved M; Djomo SN; Corona A; Dalgaard T
    Sci Total Environ; 2017 Nov; 598():497-512. PubMed ID: 28448939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses.
    Nieder-Heitmann M; Haigh KF; Görgens JF
    Bioresour Technol; 2018 Aug; 262():159-168. PubMed ID: 29704763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery.
    Parajuli R; Dalgaard T; Birkved M
    Sci Total Environ; 2018 Apr; 619-620():127-143. PubMed ID: 29145050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Composites.
    David G; Michel J; Gastaldi E; Gontard N; Angellier-Coussy H
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of commercial waste biorefineries for cassava starch industries: Techno-economic assessment.
    Padi RK; Chimphango A
    Bioresour Technol; 2020 Feb; 297():122461. PubMed ID: 31787518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review.
    Jesus M; Romaní A; Mata F; Domingues L
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the environmental sustainability of glucose from wheat as a fermentation feedstock.
    Salim I; González-García S; Feijoo G; Moreira MT
    J Environ Manage; 2019 Oct; 247():323-332. PubMed ID: 31252231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LCA of bioethanol and furfural production from vetiver.
    Raman JK; Gnansounou E
    Bioresour Technol; 2015 Jun; 185():202-10. PubMed ID: 25770467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery.
    Forte A; Zucaro A; Basosi R; Fierro A
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces.
    David G; Vannini M; Sisti L; Marchese P; Celli A; Gontard N; Angellier-Coussy H
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations.
    Luo L; van der Voet E; Huppes G
    Bioresour Technol; 2010 Jul; 101(13):5023-32. PubMed ID: 20093018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives.
    Mishra S; Roy M; Mohanty K
    Bioresour Technol; 2019 Nov; 292():122008. PubMed ID: 31466819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery.
    Sohel MI; Jack M
    Bioresour Technol; 2010 Dec; 101(23):9342-7. PubMed ID: 20659793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coproduction of lignin and glucose from vine shoots by eco-friendly strategies: Toward the development of an integrated biorefinery.
    Dávila I; Gullón P; Andrés MA; Labidi J
    Bioresour Technol; 2017 Nov; 244(Pt 1):328-337. PubMed ID: 28780267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.