BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32059127)

  • 1. Warming and CO
    Cabrerizo MJ; Álvarez-Manzaneda MI; León-Palmero E; Guerrero-Jiménez G; de Senerpont Domis LN; Teurlincx S; González-Olalla JM
    Water Res; 2020 Apr; 173():115579. PubMed ID: 32059127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming and oligotrophication cause shifts in freshwater phytoplankton communities.
    Verbeek L; Gall A; Hillebrand H; Striebel M
    Glob Chang Biol; 2018 Oct; 24(10):4532-4543. PubMed ID: 29856108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental warming promotes phytoplankton species sorting towards cyanobacterial blooms and leads to potential changes in ecosystem functioning.
    Moresco GA; Dias JD; Cabrera-Lamanna L; Baladán C; Bizic M; Rodrigues LC; Meerhoff M
    Sci Total Environ; 2024 May; 924():171621. PubMed ID: 38467252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental warming promotes CO
    Colina M; Meerhoff M; Cabrera-Lamanna L; Kosten S
    Sci Total Environ; 2024 Apr; 920():171029. PubMed ID: 38367721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication.
    Yang Y; Wang H; Yan S; Wang T; Zhang P; Zhang H; Wang H; Hansson LA; Xu J
    Environ Sci Technol; 2023 Aug; 57(32):11767-11778. PubMed ID: 37535835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of eutrophication and warming on polyunsaturated fatty acids in complex phytoplankton communities: A mesocosm experiment.
    Strandberg U; Hiltunen M; Syväranta J; Levi EE; Davidson TA; Jeppesen E; Brett MT
    Sci Total Environ; 2022 Oct; 843():157001. PubMed ID: 35772541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen addition effect overrides warming effect on dissolved CO
    Yuan D; Xu YJ; Ma S; Le J; Zhang K; Miao R; Li S
    Water Res; 2023 Oct; 244():120437. PubMed ID: 37556989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO₂ alters community composition and response to nutrient enrichment of freshwater phytoplankton.
    Low-Décarie E; Bell G; Fussmann GF
    Oecologia; 2015 Mar; 177(3):875-883. PubMed ID: 25430043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of climate change and oligotrophication on quality and quantity of lake primary production: A case study in Lake Biwa.
    Kazama T; Hayakawa K; Nagata T; Shimotori K; Imai A
    Sci Total Environ; 2024 Jun; 927():172266. PubMed ID: 38583615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment.
    Richardson J; Feuchtmayr H; Miller C; Hunter PD; Maberly SC; Carvalho L
    Glob Chang Biol; 2019 Oct; 25(10):3365-3380. PubMed ID: 31095834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.
    Domis LN; Van de Waal DB; Helmsing NR; Van Donk E; Mooij WM
    Ecology; 2014 Jun; 95(6):1485-95. PubMed ID: 25039214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of rising atmospheric CO
    Ma J; Wang P
    Sci Total Environ; 2021 Feb; 754():141889. PubMed ID: 32920383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.
    Lu X; Song S; Lu Y; Wang T; Liu Z; Li Q; Zhang M; Suriyanarayanan S; Jenkins A
    Environ Sci Process Impacts; 2017 Oct; 19(10):1300-1311. PubMed ID: 28858346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: A multi-influence of climate change on freshwater planktonic communities.
    Li W; Xu X; Yao J; Tanaka N; Nishimura O; Ma H
    Sci Total Environ; 2019 Mar; 658():1175-1185. PubMed ID: 30677981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size.
    Schulhof MA; Shurin JB; Declerck SAJ; Van de Waal DB
    Glob Chang Biol; 2019 Aug; 25(8):2751-2762. PubMed ID: 31004556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of CO
    Zagarese HE; Sagrario MLÁG; Wolf-Gladrow D; Nõges P; Nõges T; Kangur K; Matsuzaki SS; Kohzu A; Vanni MJ; Özkundakci D; Echaniz SA; Vignatti A; Grosman F; Sanzano P; Van Dam B; Knoll LB
    Water Res; 2021 Feb; 190():116715. PubMed ID: 33310445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu.
    Wu P; Lu Y; Lu Y; Dai J; Huang T
    Water Environ Res; 2020 Jan; 92(1):138-148. PubMed ID: 31486194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How rising CO
    Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J
    Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems.
    Zhang P; Wang T; Zhang H; Wang H; Hilt S; Shi P; Cheng H; Feng M; Pan M; Guo Y; Wang K; Xu X; Chen J; Zhao K; He Y; Zhang M; Xu J
    Environ Int; 2022 Oct; 168():107478. PubMed ID: 35998413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.