BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32059306)

  • 1. Comparative study on Pb
    Zhang W; Du W; Wang F; Xu H; Zhao T; Zhang H; Ding Y; Zhu W
    Sci Total Environ; 2020 May; 716():137108. PubMed ID: 32059306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative adsorption of Pb
    Zhu W; Du W; Shen X; Zhang H; Ding Y
    Environ Pollut; 2017 Aug; 227():89-97. PubMed ID: 28458250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Adsorption of Pb
    Du WH; Zhu WQ; Pan XH; Shen XY; Chen SY; Chen KL; Mushala K; Zhang HJ; Ding Y
    Huan Jing Ke Xue; 2017 May; 38(5):2172-2181. PubMed ID: 29965126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars.
    Xu X; Cao X; Zhao L
    Chemosphere; 2013 Aug; 92(8):955-61. PubMed ID: 23591132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.
    Meng J; Tao M; Wang L; Liu X; Xu J
    Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies.
    Zhao M; Dai Y; Zhang M; Feng C; Qin B; Zhang W; Zhao N; Li Y; Ni Z; Xu Z; Tsang DCW; Qiu R
    Sci Total Environ; 2020 May; 717():136894. PubMed ID: 32084677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment.
    Meng J; Wang L; Liu X; Wu J; Brookes PC; Xu J
    Bioresour Technol; 2013 Aug; 142():641-6. PubMed ID: 23774223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media.
    Idrees M; Batool S; Kalsoom T; Yasmeen S; Kalsoom A; Raina S; Zhuang Q; Kong J
    J Environ Manage; 2018 May; 213():109-118. PubMed ID: 29482091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced adsorption of Pb(II) by phosphorus-modified chicken manure and Chinese medicine residue co-pyrolysis biochar.
    Chen X; Zhu X; Fan G; Wang X; Li H; Li H; Xu X
    Microsc Res Tech; 2022 Nov; 85(11):3589-3599. PubMed ID: 35869784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dairy-manure derived biochar effectively sorbs lead and atrazine.
    Cao X; Ma L; Gao B; Harris W
    Environ Sci Technol; 2009 May; 43(9):3285-91. PubMed ID: 19534148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis.
    Hassan M; Liu Y; Naidu R; Parikh SJ; Du J; Qi F; Willett IR
    Sci Total Environ; 2020 Nov; 744():140714. PubMed ID: 32717463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry.
    Qin J; Cheng Y; Sun M; Yan L; Shen G
    Sci Total Environ; 2016 Nov; 569-570():1-8. PubMed ID: 27323331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of chromate reduction in soils by surface modified biochar.
    Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R
    J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar.
    Cao X; Ma L; Liang Y; Gao B; Harris W
    Environ Sci Technol; 2011 Jun; 45(11):4884-9. PubMed ID: 21542567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    Wang Y; Liu R
    Sci Total Environ; 2018 Jul; 628-629():1139-1148. PubMed ID: 30045537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.
    Yang G; Wu L; Xian Q; Shen F; Wu J; Zhang Y
    PLoS One; 2016; 11(5):e0154562. PubMed ID: 27144922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation.
    Cao X; Harris W
    Bioresour Technol; 2010 Jul; 101(14):5222-8. PubMed ID: 20206509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure.
    Meng J; Feng X; Dai Z; Liu X; Wu J; Xu J
    Environ Sci Pollut Res Int; 2014; 21(11):7035-46. PubMed ID: 24532283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system.
    Liu L; Huang Y; Zhang S; Gong Y; Su Y; Cao J; Hu H
    Waste Manag; 2019 Dec; 100():287-295. PubMed ID: 31568977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.