These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32059498)

  • 1. Biological Activity Profiles of Multitarget Ligands from X-ray Structures.
    Feldmann C; Bajorath J
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32059498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Target Associations for Polypharmacology from Analysis of Crystallographic Ligands of the Protein Data Bank.
    Pinzi L; Rastelli G
    J Chem Inf Model; 2020 Jan; 60(1):372-390. PubMed ID: 31800237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds.
    Proschak E; Stark H; Merk D
    J Med Chem; 2019 Jan; 62(2):420-444. PubMed ID: 30035545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypharmacology: in silico methods of ligand design and development.
    McKie SA
    Future Med Chem; 2016 Apr; 8(5):579-602. PubMed ID: 27105127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology.
    Cerisier N; Petitjean M; Regad L; Bayard Q; Réau M; Badel A; Camproux AC
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31295958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity.
    Feldmann C; Yonchev D; Stumpfe D; Bajorath J
    Mol Pharm; 2020 Dec; 17(12):4652-4666. PubMed ID: 33151084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing Promiscuity at the Level of Active Compounds and Targets.
    Bajorath J
    Mol Inform; 2016 Dec; 35(11-12):583-587. PubMed ID: 27870240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray-Structure-Based Identification of Compounds with Activity against Targets from Different Families and Generation of Templates for Multitarget Ligand Design.
    Gilberg E; Stumpfe D; Bajorath J
    ACS Omega; 2018 Jan; 3(1):106-111. PubMed ID: 30023769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray Structure-Based Chemoinformatic Analysis Identifies Promiscuous Ligands Binding to Proteins from Different Classes with Varying Shapes.
    Feldmann C; Bajorath J
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From combinations to multitarget-directed ligands: A continuum in Alzheimer's disease polypharmacology.
    Albertini C; Salerno A; de Sena Murteira Pinheiro P; Bolognesi ML
    Med Res Rev; 2021 Sep; 41(5):2606-2633. PubMed ID: 32557696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medicinal Polypharmacology in the Clinic - Translating the Polypharmacolome into Therapeutic Benefit.
    Rafehi M; Möller M; Ismail Al-Khalil W; Stefan SM
    Pharm Res; 2024 Mar; 41(3):411-417. PubMed ID: 38366233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational polypharmacology analysis of the heat shock protein 90 interactome.
    Anighoro A; Stumpfe D; Heikamp K; Beebe K; Neckers LM; Bajorath J; Rastelli G
    J Chem Inf Model; 2015 Mar; 55(3):676-86. PubMed ID: 25686391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of protein conformations for structure-based polypharmacology studies.
    Pinzi L; Caporuscio F; Rastelli G
    Drug Discov Today; 2018 Nov; 23(11):1889-1896. PubMed ID: 30099123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GES polypharmacology fingerprints: a novel approach for drug repositioning.
    Pérez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW
    J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound promiscuity: what can we learn from current data?
    Hu Y; Bajorath J
    Drug Discov Today; 2013 Jul; 18(13-14):644-50. PubMed ID: 23524195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of ligand-target interaction data in ChEMBL is associated with increasing and activity measurement-dependent compound promiscuity.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Oct; 52(10):2550-8. PubMed ID: 22978710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.