BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32059521)

  • 1. Arachidonoylcholine and Other Unsaturated Long-Chain Acylcholines Are Endogenous Modulators of the Acetylcholine Signaling System.
    Akimov MG; Kudryavtsev DS; Kryukova EV; Fomina-Ageeva EV; Zakharov SS; Gretskaya NM; Zinchenko GN; Serkov IV; Makhaeva GF; Boltneva NP; Kovaleva NV; Serebryakova OG; Lushchekina SV; Palikov VA; Palikova Y; Dyachenko IA; Kasheverov IE; Tsetlin VI; Bezuglov VV
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32059521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling.
    Kinchen JM; Mohney RP; Pappan KL
    J Proteome Res; 2022 Mar; 21(3):599-611. PubMed ID: 34758617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprotective and Antioxidant Activity of Arachidonoyl Choline, Its Bis-Quaternized Analogues and Other Acylcholines.
    Akimov MG; Dudina PV; Fomina-Ageeva EV; Gretskaya NM; Bosaya AA; Rudakova EV; Makhaeva GF; Kagarlitsky GO; Eremin SA; Tsetlin VI; Bezuglov VV
    Dokl Biochem Biophys; 2020 Mar; 491(1):93-97. PubMed ID: 32483760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase.
    Ghafary S; Ghobadian R; Mahdavi M; Nadri H; Moradi A; Akbarzadeh T; Najafi Z; Sharifzadeh M; Edraki N; Moghadam FH; Amini M
    Daru; 2020 Dec; 28(2):463-477. PubMed ID: 32372339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor.
    Cieslikiewicz-Bouet M; Naldi M; Bartolini M; Pérez B; Servent D; Jean L; Aráoz R; Renard PY
    Biochem Pharmacol; 2020 Jul; 177():114010. PubMed ID: 32360492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies.
    Mutahir S; Jończyk J; Bajda M; Khan IU; Khan MA; Ullah N; Ashraf M; Qurat-ul-Ain ; Riaz S; Hussain S; Yar M
    Bioorg Chem; 2016 Feb; 64():13-20. PubMed ID: 26595185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase.
    Petrov KA; Girard E; Nikitashina AD; Colasante C; Bernard V; Nurullin L; Leroy J; Samigullin D; Colak O; Nikolsky E; Plaud B; Krejci E
    J Neurosci; 2014 Sep; 34(36):11870-83. PubMed ID: 25186736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment.
    Makhaeva GF; Lushchekina SV; Kovaleva NV; Yu Astakhova T; Boltneva NP; Rudakova EV; Serebryakova OG; Proshin AN; Serkov IV; Trofimova TP; Tafeenko VA; Radchenko EV; Palyulin VA; Fisenko VP; Korábečný J; Soukup O; Richardson RJ
    Bioorg Chem; 2021 Jul; 112():104974. PubMed ID: 34029971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor.
    Kasheverov IE; Zhmak MN; Fish A; Rucktooa P; Khruschov AY; Osipov AV; Ziganshin RH; D'hoedt D; Bertrand D; Sixma TK; Smit AB; Tsetlin VI
    J Neurochem; 2009 Nov; 111(4):934-44. PubMed ID: 19712060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).
    Wan Othman WNN; Liew SY; Khaw KY; Murugaiyah V; Litaudon M; Awang K
    Bioorg Med Chem; 2016 Sep; 24(18):4464-4469. PubMed ID: 27492195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Serebryakova OG; Stupina TS; Terentiev AA; Serkov IV; Proshin AN; Bachurin SO; Richardson RJ
    Bioorg Med Chem; 2016 Mar; 24(5):1050-62. PubMed ID: 26827140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Butyrylcholinesterase in lipid metabolism: A new outlook.
    Gok M; Cicek C; Bodur E
    J Neurochem; 2024 Apr; 168(4):381-385. PubMed ID: 37129444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curare alkaloids from Matis Dart Poison: Comparison with d-tubocurarine in interactions with nicotinic, 5-HT3 serotonin and GABAA receptors.
    Spirova EN; Ivanov IA; Kasheverov IE; Kudryavtsev DS; Shelukhina IV; Garifulina AI; Son LV; Lummis SCR; Malca-Garcia GR; Bussmann RW; Hennig L; Giannis A; Tsetlin VI
    PLoS One; 2019; 14(1):e0210182. PubMed ID: 30608952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.
    Kia Y; Osman H; Kumar RS; Basiri A; Murugaiyah V
    Bioorg Med Chem; 2014 Feb; 22(4):1318-28. PubMed ID: 24461561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors.
    Taha M; Rahim F; Uddin N; Khan IU; Iqbal N; Anouar EH; Salahuddin M; Farooq RK; Gollapalli M; Khan KM; Zafar A
    Int J Biol Macromol; 2021 Oct; 188():1025-1036. PubMed ID: 34390751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds.
    Lee JP; Kang MG; Lee JY; Oh JM; Baek SC; Leem HH; Park D; Cho ML; Kim H
    Bioorg Chem; 2019 Aug; 89():103043. PubMed ID: 31200287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional characterization of an organometallic ruthenium complex as a potential myorelaxant drug.
    Trobec T; Žužek MC; Sepčić K; Kladnik J; Kljun J; Turel I; Benoit E; Frangež R
    Biomed Pharmacother; 2020 Jul; 127():110161. PubMed ID: 32380389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity.
    Darvesh S; MacDonald SE; Losier AM; Martin E; Hopkins DA; Armour JA
    J Auton Nerv Syst; 1998 Jul; 71(2-3):75-84. PubMed ID: 9760044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Series of New Hydrazone Derivatives: Synthesis, Molecular Docking and Anticholinesterase Activity Studies.
    Bozbey İ; Özdemir Z; Uslu H; Özçelik AB; Şenol FS; Orhan İE; Uysal M
    Mini Rev Med Chem; 2020; 20(11):1042-1060. PubMed ID: 31660824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors.
    Pejchal V; Štěpánková Š; Pejchalová M; Královec K; Havelek R; Růžičková Z; Ajani H; Lo R; Lepšík M
    Bioorg Med Chem; 2016 Apr; 24(7):1560-72. PubMed ID: 26947959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.