These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 32059552)

  • 21. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.
    Sreekumar S; Balakrishnan M; Goulas K; Gunbas G; Gokhale AA; Louie L; Grippo A; Scown CD; Bell AT; Toste FD
    ChemSusChem; 2015 Aug; 8(16):2609-14. PubMed ID: 26216783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.
    Sacia ER; Balakrishnan M; Deaner MH; Goulas KA; Toste FD; Bell AT
    ChemSusChem; 2015 May; 8(10):1726-36. PubMed ID: 25891778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.
    Lobo P; Hagen DE; Whitefield PD
    Environ Sci Technol; 2011 Dec; 45(24):10744-9. PubMed ID: 22043875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of biofuels from synthesis gas using microbial catalysts.
    Tirado-Acevedo O; Chinn MS; Grunden AM
    Adv Appl Microbiol; 2010; 70():57-92. PubMed ID: 20359454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofuels from Renewable Sources, a Potential Option for Biodiesel Production.
    Neupane D
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals.
    Chheda JN; Huber GW; Dumesic JA
    Angew Chem Int Ed Engl; 2007; 46(38):7164-83. PubMed ID: 17659519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Life Cycle Economic and Environmental Assessment of Producing Synthetic Jet Fuel Using CO
    Saad DM; Terlouw T; Sacchi R; Bauer C
    Environ Sci Technol; 2024 May; 58(21):9158-9174. PubMed ID: 38753974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.
    Román-Leshkov Y; Barrett CJ; Liu ZY; Dumesic JA
    Nature; 2007 Jun; 447(7147):982-5. PubMed ID: 17581580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage.
    Lobato MR; Cazarolli JC; Rios RDF; D' Alessandro EB; Lutterbach MTS; Filho NRA; Pasa VMD; Aranda D; Scorza PR; Bento FM
    Braz J Microbiol; 2023 Sep; 54(3):1603-1621. PubMed ID: 37584891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metalloenzymes for Fatty Acid-Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts.
    Iqbal T; Chakraborty S; Murugan S; Das D
    Chem Asian J; 2022 May; 17(10):e202200105. PubMed ID: 35319822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C1-carbon sources for chemical and fuel production by microbial gas fermentation.
    Dürre P; Eikmanns BJ
    Curr Opin Biotechnol; 2015 Dec; 35():63-72. PubMed ID: 25841103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
    Hill J; Nelson E; Tilman D; Polasky S; Tiffany D
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils.
    Di Vito Nolfi G; Gallucci K; Rossi L
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products.
    Joyce BL; Stewart CN
    Biotechnol Adv; 2012; 30(5):1011-22. PubMed ID: 21856404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.
    Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D
    J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects.
    Shahid MK; Batool A; Kashif A; Nawaz MH; Aslam M; Iqbal N; Choi Y
    J Environ Manage; 2021 Nov; 297():113268. PubMed ID: 34280865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.
    Pierobon F; Eastin IL; Ganguly I
    Biotechnol Biofuels; 2018; 11():139. PubMed ID: 29785206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Life cycle assessment of novel thermochemical - biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production.
    Kourkoumpas DS; Βon A; Sagani A; Atsonios K; Grammelis P; Karellas S; Kakaras E
    Bioresour Technol; 2024 Feb; 393():130115. PubMed ID: 38013031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.