These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 32059552)

  • 41. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.
    Liu Q; Xu G; Wang X; Liu X; Mu X
    ChemSusChem; 2016 Dec; 9(24):3465-3472. PubMed ID: 27896953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic fast pyrolysis of lignocellulosic biomass.
    Liu C; Wang H; Karim AM; Sun J; Wang Y
    Chem Soc Rev; 2014 Nov; 43(22):7594-623. PubMed ID: 24801125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomass directional pyrolysis based on element economy to produce high-quality fuels, chemicals, carbon materials - A review.
    Zhang H; Yang K; Tao Y; Yang Q; Xu L; Liu C; Ma L; Xiao R
    Biotechnol Adv; 2023 Dec; 69():108262. PubMed ID: 37758024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids.
    Huq NA; Hafenstine GR; Huo X; Nguyen H; Tifft SM; Conklin DR; Stück D; Stunkel J; Yang Z; Heyne JS; Wiatrowski MR; Zhang Y; Tao L; Zhu J; McEnally CS; Christensen ED; Hays C; Van Allsburg KM; Unocic KA; Meyer HM; Abdullah Z; Vardon DR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33723013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.
    Serrano-Ruiz JC; Luque R; Sepúlveda-Escribano A
    Chem Soc Rev; 2011 Nov; 40(11):5266-81. PubMed ID: 21713268
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
    Han J; Tao L; Wang M
    Biotechnol Biofuels; 2017; 10():21. PubMed ID: 28138339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2008 Oct; 42(20):7559-65. PubMed ID: 18983075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioconversion of natural gas to liquid fuel: opportunities and challenges.
    Fei Q; Guarnieri MT; Tao L; Laurens LM; Dowe N; Pienkos PT
    Biotechnol Adv; 2014; 32(3):596-614. PubMed ID: 24726715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.
    Meyer PE; Green EH; Corbett JJ; Mas C; Winebrake JJ
    J Air Waste Manag Assoc; 2011 Mar; 61(3):285-94. PubMed ID: 21416755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization.
    Jing L; El-Houjeiri HM; Monfort JC; Littlefield J; Al-Qahtani A; Dixit Y; Speth RL; Brandt AR; Masnadi MS; MacLean HL; Peltier W; Gordon D; Bergerson JA
    Nat Commun; 2022 Dec; 13(1):7853. PubMed ID: 36543764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.
    Yao B; Xiao T; Makgae OA; Jie X; Gonzalez-Cortes S; Guan S; Kirkland AI; Dilworth JR; Al-Megren HA; Alshihri SM; Dobson PJ; Owen GP; Thomas JM; Edwards PP
    Nat Commun; 2020 Dec; 11(1):6395. PubMed ID: 33353949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Upward revision of global fossil fuel methane emissions based on isotope database.
    Schwietzke S; Sherwood OA; Bruhwiler LM; Miller JB; Etiope G; Dlugokencky EJ; Michel SE; Arling VA; Vaughn BH; White JW; Tans PP
    Nature; 2016 Oct; 538(7623):88-91. PubMed ID: 27708291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering.
    Liu K; Li S
    Curr Opin Biotechnol; 2020 Apr; 62():7-14. PubMed ID: 31539870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.
    Falter C; Pitz-Paal R
    Environ Sci Technol; 2017 Nov; 51(21):12938-12947. PubMed ID: 28946739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.
    Staples MD; Olcay H; Malina R; Trivedi P; Pearlson MN; Strzepek K; Paltsev SV; Wollersheim C; Barrett SR
    Environ Sci Technol; 2013; 47(21):12557-65. PubMed ID: 24066845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sustainable processing of algal biomass for a comprehensive biorefinery.
    Javed MU; Mukhtar H; Hayat MT; Rashid U; Mumtaz MW; Ngamcharussrivichai C
    J Biotechnol; 2022 Jun; 352():47-58. PubMed ID: 35613647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.