These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32059640)

  • 1. Transcriptome profiles of Quercus rubra responding to increased O
    Soltani N; Best T; Grace D; Nelms C; Shumaker K; Romero-Severson J; Moses D; Schuster S; Staton M; Carlson J; Gwinn K
    BMC Genomics; 2020 Feb; 21(1):160. PubMed ID: 32059640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Quercus ilex L. saplings face combined salt and ozone stress: a transcriptome analysis.
    Natali L; Vangelisti A; Guidi L; Remorini D; Cotrozzi L; Lorenzini G; Nali C; Pellegrini E; Trivellini A; Vernieri P; Landi M; Cavallini A; Giordani T
    BMC Genomics; 2018 Dec; 19(1):872. PubMed ID: 30514212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of gall oak (Quercus infectoria): De novo assembly, functional annotation and metabolic pathways analysis.
    Joudaki F; Ismaili A; Sohrabi SS; Hosseini SZ; Kahrizi D; Ahmadi H
    Genomics; 2023 Mar; 115(2):110588. PubMed ID: 36841311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome.
    Guerrero-Sanchez VM; Maldonado-Alconada AM; Amil-Ruiz F; Verardi A; Jorrín-Novo JV; Rey MD
    PLoS One; 2019; 14(1):e0210356. PubMed ID: 30650136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Analysis of Persian Oak (Quercus brantii L.) Decline Using RNA-seq Technology.
    Safari M; Ismaili A; Sohrabi SS; Nazarian-Firouzabadi F; Torabi Podeh H
    Biochem Genet; 2023 Jun; 61(3):879-900. PubMed ID: 36214954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of Pak Choi under acute ozone exposure revealed regulatory mechanism against ozone stress.
    Zhang L; Xu B; Wu T; Wen MX; Fan LX; Feng ZZ; Paoletti E
    BMC Plant Biol; 2017 Dec; 17(1):236. PubMed ID: 29216819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera).
    Xianjun P; Linhong T; Xiaoman W; Yucheng W; Shihua S
    PLoS One; 2014; 9(5):e97487. PubMed ID: 24848504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species.
    Kapoor B; Jenkins J; Schmutz J; Zhebentyayeva T; Kuelheim C; Coggeshall M; Heim C; Lasky JR; Leites L; Islam-Faridi N; Romero-Severson J; DeLeo VL; Lucas SM; Lazic D; Gailing O; Carlson J; Staton M
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37708394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.
    Torre S; Tattini M; Brunetti C; Fineschi S; Fini A; Ferrini F; Sebastiani F
    PLoS One; 2014; 9(11):e112487. PubMed ID: 25393112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics.
    Madritsch S; Wischnitzki E; Kotrade P; Ashoub A; Burg A; Fluch S; Brüggemann W; Sehr EM
    G3 (Bethesda); 2019 Oct; 9(10):3181-3199. PubMed ID: 31395652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress.
    Deng S; Ma J; Zhang L; Chen F; Sang Z; Jia Z; Ma L
    BMC Plant Biol; 2019 Jul; 19(1):321. PubMed ID: 31319815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism.
    Hui WK; Zhao FY; Wang JY; Chen XY; Li JW; Zhong Y; Li HY; Zheng JX; Zhang LZ; Que QM; Wu AM; Gong W
    BMC Genomics; 2020 Jan; 21(1):81. PubMed ID: 31992199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses.
    Lane T; Best T; Zembower N; Davitt J; Henry N; Xu Y; Koch J; Liang H; McGraw J; Schuster S; Shim D; Coggeshall MV; Carlson JE; Staton ME
    BMC Genomics; 2016 Sep; 17(1):702. PubMed ID: 27589953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing.
    Pereira-Leal JB; Abreu IA; Alabaça CS; Almeida MH; Almeida P; Almeida T; Amorim MI; Araújo S; Azevedo H; Badia A; Batista D; Bohn A; Capote T; Carrasquinho I; Chaves I; Coelho AC; Costa MM; Costa R; Cravador A; Egas C; Faro C; Fortes AM; Fortunato AS; Gaspar MJ; Gonçalves S; Graça J; Horta M; Inácio V; Leitão JM; Lino-Neto T; Marum L; Matos J; Mendonça D; Miguel A; Miguel CM; Morais-Cecílio L; Neves I; Nóbrega F; Oliveira MM; Oliveira R; Pais MS; Paiva JA; Paulo OS; Pinheiro M; Raimundo JA; Ramalho JC; Ribeiro AI; Ribeiro T; Rocheta M; Rodrigues AI; Rodrigues JC; Saibo NJ; Santo TE; Santos AM; Sá-Pereira P; Sebastiana M; Simões F; Sobral RS; Tavares R; Teixeira R; Varela C; Veloso MM; Ricardo CP
    BMC Genomics; 2014 May; 15(1):371. PubMed ID: 24885229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Sequencing and De Novo Assembly of Red and Green Forms of the Perilla frutescens var. crispa Transcriptome.
    Fukushima A; Nakamura M; Suzuki H; Saito K; Yamazaki M
    PLoS One; 2015; 10(6):e0129154. PubMed ID: 26070213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.
    Ye W; Wu H; He X; Wang L; Zhang W; Li H; Fan Y; Tan G; Liu T; Gao X
    PLoS One; 2016; 11(5):e0155505. PubMed ID: 27182594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba.
    Han XJ; Wang YD; Chen YC; Lin LY; Wu QK
    PLoS One; 2013; 8(10):e76890. PubMed ID: 24130803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress.
    Bhardwaj J; Chauhan R; Swarnkar MK; Chahota RK; Singh AK; Shankar R; Yadav SK
    BMC Genomics; 2013 Sep; 14():647. PubMed ID: 24059455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.