These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32059881)

  • 1. Functionalized cellulose nanofibril aerogels as cooperative acid-base organocatalysts for liquid flow reactions.
    Ellebracht NC; Jones CW
    Carbohydr Polym; 2020 Apr; 233():115825. PubMed ID: 32059881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils.
    Erlandsson J; Françon H; Marais A; Granberg H; Wågberg L
    Biomacromolecules; 2019 Feb; 20(2):728-737. PubMed ID: 30394086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofibrillar chitin aerogels as renewable base catalysts.
    Tsutsumi Y; Koga H; Qi ZD; Saito T; Isogai A
    Biomacromolecules; 2014 Nov; 15(11):4314-9. PubMed ID: 25285573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2825-2834. PubMed ID: 28079358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking.
    Wu T; Zeng Z; Siqueira G; De France K; Sivaraman D; Schreiner C; Figi R; Zhang Q; Nyström G
    Nanoscale; 2020 Apr; 12(13):7383-7394. PubMed ID: 32207510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.
    Nemoto J; Saito T; Isogai A
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19809-15. PubMed ID: 26301859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal.
    Laitinen O; Suopajärvi T; Österberg M; Liimatainen H
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):25029-25037. PubMed ID: 28683195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption.
    Bian H; Duan S; Wu J; Fu Y; Yang W; Yao S; Zhang Z; Xiao H; Dai H; Hu C
    Carbohydr Polym; 2022 Feb; 278():119011. PubMed ID: 34973804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy.
    Guo L; Chen Z; Lyu S; Fu F; Wang S
    Carbohydr Polym; 2018 Jan; 179():333-340. PubMed ID: 29111059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Biopolymer Aerogels Using Green Solvents.
    Subrahmanyam R; Gurikov P; Meissner I; Smirnova I
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D porous cellulose nanofibril aerogels with a controllable copper nanoparticle loading as a highly efficient non-noble-metal catalyst for 4-nitrophenol reduction.
    Oh S; Yu H; Han Y; Jeong HS; Hong HJ
    Chemosphere; 2022 Aug; 301():134518. PubMed ID: 35395257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal.
    Tang J; Song Y; Zhao F; Spinney S; da Silva Bernardes J; Tam KC
    Carbohydr Polym; 2019 Mar; 208():404-412. PubMed ID: 30658817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.
    Ye R; Zhukhovitskiy AV; Deraedt CV; Toste FD; Somorjai GA
    Acc Chem Res; 2017 Aug; 50(8):1894-1901. PubMed ID: 28704031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.
    Jiang F; Dinh DM; Hsieh YL
    Carbohydr Polym; 2017 Oct; 173():286-294. PubMed ID: 28732868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane.
    Zhai T; Zheng Q; Cai Z; Turng LS; Xia H; Gong S
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7436-44. PubMed ID: 25822398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels.
    Pircher N; Carbajal L; Schimper C; Bacher M; Rennhofer H; Nedelec JM; Lichtenegger HC; Rosenau T; Liebner F
    Cellulose (Lond); 2016; 23():1949-1966. PubMed ID: 27340346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates.
    Liu S; Yan Q; Tao D; Yu T; Liu X
    Carbohydr Polym; 2012 Jun; 89(2):551-7. PubMed ID: 24750757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents.
    Zhai T; Zheng Q; Cai Z; Xia H; Gong S
    Carbohydr Polym; 2016 Sep; 148():300-8. PubMed ID: 27185143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.