BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3206)

  • 1. Preparation, characterization, and chemical properties of the flavin coenzyme analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphate, and 5-deazariboflavin 5'-diphosphate, 5'leads to5'-adenosine ester.
    Spencer R; Fisher J; Walsh C
    Biochemistry; 1976 Mar; 15(5):1043-53. PubMed ID: 3206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization, and coenzymic properties of 5-carba-5-deaza and 1-carba-1-deaza analogs of riboflavin, FMN, and FAD.
    Hersh LB; Walsh C
    Methods Enzymol; 1980; 66():277-87. PubMed ID: 6246390
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzyme-catalyzed redox reactions with the flavin analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphte, and 5-deazariboflavin 5'-diphosphate, 5' leads to 5'-adenosine ester.
    Fisher J; Spencer R; Walsh C
    Biochemistry; 1976 Mar; 15(5):1054-64. PubMed ID: 3207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-and two-electron redox chemistry of 1-carba-1-deazariboflavin.
    Spencer R; Fisher J; Walsh C
    Biochemistry; 1977 Aug; 16(16):3586-94. PubMed ID: 19057
    [No Abstract]   [Full Text] [Related]  

  • 5. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and enzymatic properties of riboflavin analogues.
    Walsh C; Fisher J; Spencer R; Graham DW; Ashton WT; Brown JE; Brown RD; Rogers EF
    Biochemistry; 1978 May; 17(10):1942-51. PubMed ID: 207304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved chemical syntheses of 1- and 5-deazariboflavin.
    Carlson EE; Kiessling LL
    J Org Chem; 2004 Apr; 69(7):2614-7. PubMed ID: 15049673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2'-fluoro-2'-deoxy-D-arabinoflavin: characterization of a novel flavin and its effects on the formation and stability of two-electron-reduced mercuric ion reductase.
    Miller SM
    Biochemistry; 1995 Oct; 34(40):13066-73. PubMed ID: 7548066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state and laser flash induced photoreduction of yeast glutathione reductase by 5-deazariboflavin and by a viologen analogue: stabilization of flavin adenine dinucleotide semiquinone species by complexation.
    Navarro JA; Roncel M; Tollin G
    Biochemistry; 1990 Jun; 29(25):6102-7. PubMed ID: 2383572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and application of isotopically labeled flavin nucleotides.
    Mishanina TV; Kohen A
    J Labelled Comp Radiopharm; 2015 Jul; 58(9):370-5. PubMed ID: 26149960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple acyl-coenzyme A dehydrogenation disorder responsive to riboflavin: substrate oxidation, flavin metabolism, and flavoenzyme activities in fibroblasts.
    Rhead W; Roettger V; Marshall T; Amendt B
    Pediatr Res; 1993 Feb; 33(2):129-35. PubMed ID: 8433888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes.
    Manstein DJ; Pai EF
    J Biol Chem; 1986 Dec; 261(34):16169-73. PubMed ID: 3023344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum.
    Schauer NL; Ferry JG; Honek JF; Orme-Johnson WH; Walsh C
    Biochemistry; 1986 Nov; 25(22):7163-8. PubMed ID: 3801411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboflavin 5'-pyrophosphate: a contaminant of commercial FAD, a coenzyme for FAD-dependent oxidases, and an inhibitor of FAD synthetase.
    Hartman HA; Edmondson DE; McCormick DB
    Anal Biochem; 1992 May; 202(2):348-55. PubMed ID: 1355635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the redox potential of deazariboflavin by equilibration with flavins.
    Stankovich MT; Massey V
    Biochim Biophys Acta; 1976 Dec; 452(2):335-44. PubMed ID: 12806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue.
    Averill BA; Schonbrunn A; Abeles RH
    J Biol Chem; 1975 Feb; 250(4):1603-5. PubMed ID: 234460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.