BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32060145)

  • 1. ATM Paradoxically Promotes Oncogenic Transformation via Transcriptional Reprogramming.
    Liu X; Hu M; Liu P; Jiao M; Zhou M; Lee AK; Li F; Li CY
    Cancer Res; 2020 Apr; 80(8):1669-1680. PubMed ID: 32060145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Model of ATM Activation and Chromatin Relaxation by Ionizing Radiation.
    Li Y; Cucinotta FA
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32059363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local activation of mammalian separase in interphase promotes double-strand break repair and prevents oncogenic transformation.
    Hellmuth S; Gutiérrez-Caballero C; Llano E; Pendás AM; Stemmann O
    EMBO J; 2018 Nov; 37(22):. PubMed ID: 30305303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRE11 Promotes Tumorigenesis by Facilitating Resistance to Oncogene-Induced Replication Stress.
    Spehalski E; Capper KM; Smith CJ; Morgan MJ; Dinkelmann M; Buis J; Sekiguchi JM; Ferguson DO
    Cancer Res; 2017 Oct; 77(19):5327-5338. PubMed ID: 28819025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents.
    Cui Y; Palii SS; Innes CL; Paules RS
    Cell Cycle; 2014; 13(22):3541-50. PubMed ID: 25483091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAGE-C2 promotes growth and tumorigenicity of melanoma cells, phosphorylation of KAP1, and DNA damage repair.
    Bhatia N; Xiao TZ; Rosenthal KA; Siddiqui IA; Thiyagarajan S; Smart B; Meng Q; Zuleger CL; Mukhtar H; Kenney SC; Albertini MR; Jack Longley B
    J Invest Dermatol; 2013 Mar; 133(3):759-767. PubMed ID: 23096706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells.
    Jette NR; Radhamani S; Arthur G; Ye R; Goutam S; Bolyos A; Petersen LF; Bose P; Bebb DG; Lees-Miller SP
    Br J Cancer; 2019 Oct; 121(7):600-610. PubMed ID: 31481733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.
    Mian E; Wiesmüller L
    Methods Mol Biol; 2017; 1599():317-334. PubMed ID: 28477129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATM Dependent Silencing Links Nucleolar Chromatin Reorganization to DNA Damage Recognition.
    Harding SM; Boiarsky JA; Greenberg RA
    Cell Rep; 2015 Oct; 13(2):251-9. PubMed ID: 26440899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor suppressor ataxia telangiectasia mutated functions downstream of TGF-β1 in orchestrating profibrotic responses.
    Overstreet JM; Samarakoon R; Cardona-Grau D; Goldschmeding R; Higgins PJ
    FASEB J; 2015 Apr; 29(4):1258-68. PubMed ID: 25480384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks.
    Pennisi R; Antoccia A; Leone S; Ascenzi P; di Masi A
    FEBS J; 2017 Aug; 284(15):2378-2395. PubMed ID: 28631426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATM in senescence.
    Aird KM; Zhang R
    Oncotarget; 2015 Jun; 6(17):14729-30. PubMed ID: 26143490
    [No Abstract]   [Full Text] [Related]  

  • 13. ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors.
    Ueno S; Sudo T; Hirasawa A
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells.
    Mavuluri J; Beesetti S; Surabhi R; Kremerskothen J; Venkatraman G; Rayala SK
    Mol Cell Biol; 2016 May; 36(9):1354-65. PubMed ID: 26929199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the phosphorylation of ATM contributes to radioresistance of glioma stem cells.
    Zhou W; Sun M; Li GH; Wu YZ; Wang Y; Jin F; Zhang YY; Yang L; Wang DL
    Oncol Rep; 2013 Oct; 30(4):1793-801. PubMed ID: 23846672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM.
    Song H; Hollstein M; Xu Y
    Nat Cell Biol; 2007 May; 9(5):573-80. PubMed ID: 17417627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype.
    Tal E; Alfo M; Zha S; Barzilai A; De Zeeuw CI; Ziv Y; Shiloh Y
    DNA Repair (Amst); 2018 Dec; 72():10-17. PubMed ID: 30348496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks.
    Fukumoto Y; Kuki K; Morii M; Miura T; Honda T; Ishibashi K; Hasegawa H; Kubota S; Ide Y; Yamaguchi N; Nakayama Y; Yamaguchi N
    Biochem Biophys Res Commun; 2014 Sep; 452(3):542-7. PubMed ID: 25173936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATM-mediated DNA double-strand break response facilitated oncolytic Newcastle disease virus replication and promoted syncytium formation in tumor cells.
    Ren S; Ur Rehman Z; Gao B; Yang Z; Zhou J; Meng C; Song C; Nair V; Sun Y; Ding C
    PLoS Pathog; 2020 Jun; 16(6):e1008514. PubMed ID: 32479542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of the tumor suppressor BIN1 enables ATM Ser/Thr kinase activation by the nuclear protein E2F1 and renders cancer cells resistant to cisplatin.
    Folk WP; Kumari A; Iwasaki T; Pyndiah S; Johnson JC; Cassimere EK; Abdulovic-Cui AL; Sakamuro D
    J Biol Chem; 2019 Apr; 294(14):5700-5719. PubMed ID: 30733337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.