These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32060266)

  • 1. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice.
    Eom TY; Han SB; Kim J; Blundon JA; Wang YD; Yu J; Anderson K; Kaminski DB; Sakurada SM; Pruett-Miller SM; Horner L; Wagner B; Robinson CG; Eicholtz M; Rose DC; Zakharenko SS
    Nat Commun; 2020 Feb; 11(1):912. PubMed ID: 32060266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion.
    Chun S; Du F; Westmoreland JJ; Han SB; Wang YD; Eddins D; Bayazitov IT; Devaraju P; Yu J; Mellado Lagarde MM; Anderson K; Zakharenko SS
    Nat Med; 2017 Jan; 23(1):39-48. PubMed ID: 27892953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala.
    Eom TY; Bayazitov IT; Anderson K; Yu J; Zakharenko SS
    Cell Rep; 2017 May; 19(8):1532-1544. PubMed ID: 28538174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia.
    Earls LR; Fricke RG; Yu J; Berry RB; Baldwin LT; Zakharenko SS
    J Neurosci; 2012 Oct; 32(41):14132-44. PubMed ID: 23055483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models.
    Chun S; Westmoreland JJ; Bayazitov IT; Eddins D; Pani AK; Smeyne RJ; Yu J; Blundon JA; Zakharenko SS
    Science; 2014 Jun; 344(6188):1178-82. PubMed ID: 24904170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model.
    Toritsuka M; Kimoto S; Muraki K; Landek-Salgado MA; Yoshida A; Yamamoto N; Horiuchi Y; Hiyama H; Tajinda K; Keni N; Illingworth E; Iwamoto T; Kishimoto T; Sawa A; Tanigaki K
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17552-7. PubMed ID: 24101523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ketamine enhances dopamine D1 receptor expression by modulating microRNAs in a ketamine-induced schizophrenia-like mouse model.
    Li XJ; Yu JH; Wu X; Zhu XM; Lv P; Du Z; Lu Y; Wu X; Yao J
    Neurotoxicol Teratol; 2022; 91():107079. PubMed ID: 35202796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2.
    Nogami M; Miyamoto K; Hayakawa-Yano Y; Nakanishi A; Yano M; Okano H
    J Biol Chem; 2021; 296():100409. PubMed ID: 33581109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain.
    Al Omran AJ; Saternos HC; Liu T; Nauli SM; AbouAlaiwi WA
    J Vis Exp; 2015 Jun; (100):e52853. PubMed ID: 26067390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal exposure to methylmercury causes an impairment in ependymal cilia motility in the third ventricle and dilation of lateral ventricles in mice offspring.
    Hagiwara T; Hagino H; Ueda K; Nakama M; Minami T
    Birth Defects Res; 2020 Oct; 112(16):1253-1259. PubMed ID: 32648687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis.
    Muniz-Talavera H; Schmidt JV
    PLoS One; 2017; 12(12):e0184957. PubMed ID: 29211732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The organic mercury compounds, methylmercury and ethylmercury, inhibited ciliary movement of ventricular ependymal cells in the mouse brain around the concentrations reported for human poisoning.
    Yoshida S; Matsumoto S; Kanchika T; Hagiwara T; Minami T
    Neurotoxicology; 2016 Dec; 57():69-74. PubMed ID: 27620881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol consumption impairs the ependymal cilia motility in the brain ventricles.
    Omran AJA; Saternos HC; Althobaiti YS; Wisner A; Sari Y; Nauli SM; AbouAlaiwi WA
    Sci Rep; 2017 Oct; 7(1):13652. PubMed ID: 29057897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development.
    Olstad EW; Ringers C; Hansen JN; Wens A; Brandt C; Wachten D; Yaksi E; Jurisch-Yaksi N
    Curr Biol; 2019 Jan; 29(2):229-241.e6. PubMed ID: 30612902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia.
    Yamada S; Ishikawa M; Nozaki K
    Fluids Barriers CNS; 2021 Apr; 18(1):20. PubMed ID: 33874972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model.
    Stark KL; Xu B; Bagchi A; Lai WS; Liu H; Hsu R; Wan X; Pavlidis P; Mills AA; Karayiorgou M; Gogos JA
    Nat Genet; 2008 Jun; 40(6):751-60. PubMed ID: 18469815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.
    Sellier C; Hwang VJ; Dandekar R; Durbin-Johnson B; Charlet-Berguerand N; Ander BP; Sharp FR; Angkustsiri K; Simon TJ; Tassone F
    PLoS One; 2014; 9(8):e103884. PubMed ID: 25084529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The establishment of rotational polarity in the airway and ependymal cilia: analysis with a novel cilium motility mutant mouse.
    Matsuo M; Shimada A; Koshida S; Saga Y; Takeda H
    Am J Physiol Lung Cell Mol Physiol; 2013 Jun; 304(11):L736-45. PubMed ID: 23525783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 22q11.2 deletion syndrome and schizophrenia.
    Qin X; Chen J; Zhou T
    Acta Biochim Biophys Sin (Shanghai); 2020 Dec; 52(11):1181-1190. PubMed ID: 33098288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice.
    Kang R; Kim K; Jung Y; Choi SH; Lee C; Im GH; Shin M; Ryu K; Choi S; Yang E; Shin W; Lee S; Lee S; Papadopoulos Z; Ahn JH; Koh GY; Kipnis J; Kang H; Kim H; Cho WK; Park S; Kim SG; Kim E
    PLoS Biol; 2024 May; 22(5):e3002596. PubMed ID: 38718086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.