BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32060276)

  • 21. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of H
    Kuusk S; Bissaro B; Kuusk P; Forsberg Z; Eijsink VGH; Sørlie M; Väljamäe P
    J Biol Chem; 2018 Jan; 293(2):523-531. PubMed ID: 29138240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
    Isaksen I; Jana S; Payne CM; Bissaro B; Røhr ÅK
    Biophys J; 2024 May; 123(9):1139-1151. PubMed ID: 38571309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanism of the chitinolytic peroxygenase reaction.
    Bissaro B; Streit B; Isaksen I; Eijsink VGH; Beckham GT; DuBois JL; Røhr ÅK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1504-1513. PubMed ID: 31907317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases.
    Kommedal EG; Angeltveit CF; Klau LJ; Ayuso-Fernández I; Arstad B; Antonsen SG; Stenstrøm Y; Ekeberg D; Gírio F; Carvalheiro F; Horn SJ; Aachmann FL; Eijsink VGH
    Nat Commun; 2023 Feb; 14(1):1063. PubMed ID: 36828821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of a native lytic polysaccharide monooxygenase from Thermoascus aurantiacus.
    Fritsche S; Hopson C; Gorman J; Gabriel R; Singer SW
    Biotechnol Lett; 2020 Oct; 42(10):1897-1905. PubMed ID: 32557119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story?
    Manavalan T; Stepnov AA; Hegnar OA; Eijsink VGH
    Carbohydr Res; 2021 Jul; 505():108350. PubMed ID: 34049079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose.
    Möllers KB; Mikkelsen H; Simonsen TI; Cannella D; Johansen KS; Bjerrum MJ; Felby C
    Carbohydr Res; 2017 Aug; 448():182-186. PubMed ID: 28335986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polysaccharide degradation by lytic polysaccharide monooxygenases.
    Forsberg Z; Sørlie M; Petrović D; Courtade G; Aachmann FL; Vaaje-Kolstad G; Bissaro B; Røhr ÅK; Eijsink VG
    Curr Opin Struct Biol; 2019 Dec; 59():54-64. PubMed ID: 30947104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis.
    de Gouvêa PF; Gerolamo LE; Bernardi AV; Pereira LMS; Uyemura SA; Dinamarco TM
    Protein Pept Lett; 2019; 26(5):377-385. PubMed ID: 31237199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
    Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B
    J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering lytic polysaccharide monooxygenases (LPMOs).
    Forsberg Z; Stepnov AA; Nærdal GK; Klinkenberg G; Eijsink VGH
    Methods Enzymol; 2020; 644():1-34. PubMed ID: 32943141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-molecule study of oxidative enzymatic deconstruction of cellulose.
    Eibinger M; Sattelkow J; Ganner T; Plank H; Nidetzky B
    Nat Commun; 2017 Oct; 8(1):894. PubMed ID: 29026070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel Two-Step Process in Cellulose Depolymerization: Hematite-Mediated Photocatalysis by Lytic Polysaccharide Monooxygenase and Fenton Reaction.
    Wang D; Kao MR; Li J; Sun P; Meng Q; Vyas A; Liang PH; Wang YS; Hsieh YSY
    J Agric Food Chem; 2022 Aug; 70(32):9941-9947. PubMed ID: 35921143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular electron transfer systems fuel cellulose oxidative degradation.
    Kracher D; Scheiblbrandner S; Felice AK; Breslmayr E; Preims M; Ludwicka K; Haltrich D; Eijsink VG; Ludwig R
    Science; 2016 May; 352(6289):1098-101. PubMed ID: 27127235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.
    Pierce BC; Agger JW; Zhang Z; Wichmann J; Meyer AS
    Carbohydr Res; 2017 Sep; 449():85-94. PubMed ID: 28750348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The discovery of novel LPMO families with a new Hidden Markov model.
    Voshol GP; Vijgenboom E; Punt PJ
    BMC Res Notes; 2017 Feb; 10(1):105. PubMed ID: 28222763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.