These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32060576)

  • 1. [Artificial intelligence in vascular surgery and vascular medicine].
    Wolk S; Kleemann M; Reeps C
    Chirurg; 2020 Mar; 91(3):195-200. PubMed ID: 32060576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence- and computer-assisted navigation for shoulder surgery.
    Lee KS; Jung SH; Kim DH; Chung SW; Yoon JP
    J Orthop Surg (Hong Kong); 2024; 32(1):10225536241243166. PubMed ID: 38546214
    [No Abstract]   [Full Text] [Related]  

  • 3. An augmented reality framework for optimization of computer assisted navigation in endovascular surgery.
    Cheng I; Shen R; Moreau R; Brizzi V; Rossol N; Basu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5647-50. PubMed ID: 25571276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tele-robotics and artificial-intelligence in stroke care.
    Rabinovich EP; Capek S; Kumar JS; Park MS
    J Clin Neurosci; 2020 Sep; 79():129-132. PubMed ID: 33070881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-Aided Orthopaedic Surgery: State-of-the-Art and Future Perspectives.
    Zheng G; Nolte LP
    Adv Exp Med Biol; 2018; 1093():1-20. PubMed ID: 30306468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Integration of production-university-research based on artificial intelligence for technological innovation and transformation in gastrointestinal surgery].
    Liu GW; Li S; Chen YJ; Lu Y
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):557-561. PubMed ID: 32521974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair.
    de Ruiter QM; Moll FL; van Herwaarden JA
    J Vasc Surg; 2015 Jan; 61(1):256-64. PubMed ID: 25441011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical applications of robotic technology in vascular and endovascular surgery.
    Antoniou GA; Riga CV; Mayer EK; Cheshire NJ; Bicknell CD
    J Vasc Surg; 2011 Feb; 53(2):493-9. PubMed ID: 20801611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotics and Artificial Intelligence in Endovascular Neurosurgery.
    Bravo J; Wali AR; Hirshman BR; Gopesh T; Steinberg JA; Yan B; Pannell JS; Norbash A; Friend J; Khalessi AA; Santiago-Dieppa D
    Cureus; 2022 Mar; 14(3):e23662. PubMed ID: 35371874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of advances in image-guided orthopedic surgery.
    Fan X; Zhu Q; Tu P; Joskowicz L; Chen X
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36595258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine.
    Mirchi N; Bissonnette V; Yilmaz R; Ledwos N; Winkler-Schwartz A; Del Maestro RF
    PLoS One; 2020; 15(2):e0229596. PubMed ID: 32106247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures: a phantom study.
    Tystad Lund K; Tangen GA; Manstad-Hulaas F
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):51-57. PubMed ID: 27492068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Digitalization and use of artificial intelligence in microvascular reconstructive facial surgery].
    Goetze E; Thiem DGE; Gielisch M; Al-Nawas B; Kämmerer PW
    Chirurg; 2020 Mar; 91(3):216-221. PubMed ID: 31965197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality and telepresence for military medicine.
    Satava RM
    Comput Biol Med; 1995 Mar; 25(2):229-36. PubMed ID: 7554840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence in pediatric surgery.
    Tsai AY; Carter SR; Greene AC
    Semin Pediatr Surg; 2024 Feb; 33(1):151390. PubMed ID: 38242061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented-reality integrated robotics in neurosurgery: are we there yet?
    Madhavan K; Kolcun JPG; Chieng LO; Wang MY
    Neurosurg Focus; 2017 May; 42(5):E3. PubMed ID: 28463612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance venography and three-dimensional image fusion guidance provide a novel paradigm for endovascular recanalization of chronic central venous occlusion.
    Schwein A; Lu T; Chinnadurai P; Kitkungvan D; Shah DJ; Chakfe N; Lumsden AB; Bismuth J
    J Vasc Surg Venous Lymphat Disord; 2017 Jan; 5(1):60-69. PubMed ID: 27987612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning curve analysis of 3D-fluoroscopy image-guided pedicle screw insertions in lumbar single-level fusion procedures.
    Balling H
    Arch Orthop Trauma Surg; 2018 Nov; 138(11):1501-1509. PubMed ID: 29982886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible robotics with electromagnetic tracking improves safety and efficiency during in vitro endovascular navigation.
    Schwein A; Kramer B; Chinnadurai P; Walker S; O'Malley M; Lumsden A; Bismuth J
    J Vasc Surg; 2017 Feb; 65(2):530-537. PubMed ID: 26994950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of surgeon and patient radiation exposure by imaging technology in patients undergoing thoracolumbar fusion: systematic review of the literature.
    Pennington Z; Cottrill E; Westbroek EM; Goodwin ML; Lubelski D; Ahmed AK; Sciubba DM
    Spine J; 2019 Aug; 19(8):1397-1411. PubMed ID: 30974238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.