These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32060650)
1. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster's Blue in methanol dehydrogenase assays. Jahn B; Jonasson NSW; Hu H; Singer H; Pol A; Good NM; den Camp HJMO; Martinez-Gomez NC; Daumann LJ J Biol Inorg Chem; 2020 Mar; 25(2):199-212. PubMed ID: 32060650 [TBL] [Abstract][Full Text] [Related]
2. Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X. Dijkstra M; Frank J; Duine JA Biochem J; 1989 Jan; 257(1):87-94. PubMed ID: 2537627 [TBL] [Abstract][Full Text] [Related]
4. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates. Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalysis of a Europium-Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron-Acceptor Cytochrome c Kalimuthu P; Daumann LJ; Pol A; Op den Camp HJM; Bernhardt PV Chemistry; 2019 Jul; 25(37):8760-8768. PubMed ID: 30908783 [TBL] [Abstract][Full Text] [Related]
6. Apparent oxygen-dependent inhibition by superoxide dismutase of the quinoprotein methanol dehydrogenase. Davidson VL; Kumar MA; Wu JY Biochemistry; 1992 Feb; 31(5):1504-8. PubMed ID: 1310612 [TBL] [Abstract][Full Text] [Related]
7. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Good NM; Moore RS; Suriano CJ; Martinez-Gomez NC Sci Rep; 2019 Mar; 9(1):4248. PubMed ID: 30862918 [TBL] [Abstract][Full Text] [Related]
8. A new kinetic model for the steady-state reactions of the quinoprotein methanol dehydrogenase from Paracoccus denitrificans. Harris TK; Davidson VL Biochemistry; 1993 Apr; 32(16):4362-8. PubMed ID: 8386543 [TBL] [Abstract][Full Text] [Related]
9. Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides. Stenuit B; Lamblin G; Cornelis P; Agathos SN Environ Sci Technol; 2012 Oct; 46(19):10605-13. PubMed ID: 22881832 [TBL] [Abstract][Full Text] [Related]
10. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
12. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Williams PA; Coates L; Mohammed F; Gill R; Erskine PT; Coker A; Wood SP; Anthony C; Cooper JB Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):75-9. PubMed ID: 15608378 [TBL] [Abstract][Full Text] [Related]
13. Intermediate electron-acceptors in quantitative cytochemistry. Comparison of phenazine methosulphate and Meldola Blue. Henderson B; Loveridge N Histochemistry; 1981; 72(4):617-23. PubMed ID: 7298392 [TBL] [Abstract][Full Text] [Related]
14. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Pol A; Barends TR; Dietl A; Khadem AF; Eygensteyn J; Jetten MS; Op den Camp HJ Environ Microbiol; 2014 Jan; 16(1):255-64. PubMed ID: 24034209 [TBL] [Abstract][Full Text] [Related]
15. Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study. Lumpe H; Pol A; Op den Camp HJM; Daumann LJ Dalton Trans; 2018 Aug; 47(31):10463-10472. PubMed ID: 30020281 [TBL] [Abstract][Full Text] [Related]
16. Phenazine ethosulfate as a preferred electron acceptor to phenazine methosulfate in dye-linked enzyme assays. Ghosh R; Quayle JR Anal Biochem; 1979 Oct; 99(1):112-7. PubMed ID: 231392 [No Abstract] [Full Text] [Related]
17. How Lanthanide Ions Affect the Addition-Elimination Step of Methanol Dehydrogenases. Prejanò M; Russo N; Marino T Chemistry; 2020 Sep; 26(49):11334-11339. PubMed ID: 32369635 [TBL] [Abstract][Full Text] [Related]
18. A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. Nakagawa T; Mitsui R; Tani A; Sasa K; Tashiro S; Iwama T; Hayakawa T; Kawai K PLoS One; 2012; 7(11):e50480. PubMed ID: 23209751 [TBL] [Abstract][Full Text] [Related]
19. Studies on the mechanism of action of methoxatin-requiring methanol dehydrogenase: reaction of enzyme with electron-acceptor dye. Parkes C; Abeles RH Biochemistry; 1984 Dec; 23(26):6355-63. PubMed ID: 6442163 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase. Wadzinski AM; Ribbons DW J Bacteriol; 1975 Jun; 122(3):1364-74. PubMed ID: 238947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]