BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32060695)

  • 1. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications.
    Koesoema AA; Standley DM; Senda T; Matsuda T
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):2897-2909. PubMed ID: 32060695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in biotechnological applications of alcohol dehydrogenases.
    Zheng YG; Yin HH; Yu DF; Chen X; Tang XL; Zhang XJ; Xue YP; Wang YJ; Liu ZQ
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):987-1001. PubMed ID: 28074225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced axial chirality in biocatalytic asymmetric ketone reduction.
    Agudo R; Roiban GD; Reetz MT
    J Am Chem Soc; 2013 Feb; 135(5):1665-8. PubMed ID: 23075382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review.
    Zhang L; Sun Z; Xu G; Ni Y
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132238. PubMed ID: 38729463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Stereoselective Reduction of Prochiral Ketones by using an F
    Martin C; Tjallinks G; Trajkovic M; Fraaije MW
    Chembiochem; 2021 Jan; 22(1):156-159. PubMed ID: 32935896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols.
    Itoh N
    Appl Microbiol Biotechnol; 2014 May; 98(9):3889-904. PubMed ID: 24615386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541.
    Stampfer W; Kosjek B; Faber K; Kroutil W
    J Org Chem; 2003 Jan; 68(2):402-6. PubMed ID: 12530865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoselective bioreduction of bulky-bulky ketones by a novel ADH from Ralstonia sp.
    Lavandera I; Kern A; Ferreira-Silva B; Glieder A; de Wildeman S; Kroutil W
    J Org Chem; 2008 Aug; 73(15):6003-5. PubMed ID: 18597534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone.
    Bulut D; Duangdee N; Gröger H; Berkessel A; Hummel W
    Chembiochem; 2016 Jul; 17(14):1349-58. PubMed ID: 27123855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus.
    Musa MM; Ziegelmann-Fjeld KI; Vieille C; Zeikus JG; Phillips RS
    J Org Chem; 2007 Jan; 72(1):30-4. PubMed ID: 17194078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary Alcohol Dehydrogenases from Thermoanaerobacter pseudoethanolicus and Thermoanaerobacter brockii as Robust Catalysts.
    Musa MM; Vieille C; Phillips RS
    Chembiochem; 2021 Jun; 22(11):1884-1893. PubMed ID: 33594812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions.
    An J; Nie Y; Xu Y
    Crit Rev Biotechnol; 2019 May; 39(3):366-379. PubMed ID: 30700159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple Biosystem for the High-Yielding Cascade Conversion of Racemic Alcohols to Enantiopure Amines.
    Tian K; Li Z
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21745-21751. PubMed ID: 32776678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme.
    Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M
    Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: immobilization of alcohol dehydrogenases for the diastereoselective reduction of a β-hydroxy ketone obtained from an organocatalytic aldol reaction.
    Rulli G; Heidlindemann M; Berkessel A; Hummel W; Gröger H
    J Biotechnol; 2013 Nov; 168(3):271-6. PubMed ID: 24036136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Immobilization of ADH and GDH on Metal-Organic-Framework: An Effective Biocatalyst for Asymmetric Reduction of Ketones.
    Ran L; Lin Y; Su G; Yang Z; Teng H
    Chembiochem; 2024 Jun; 25(12):e202400147. PubMed ID: 38629211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones.
    Rodríguez C; Borzęcka W; Sattler JH; Kroutil W; Lavandera I; Gotor V
    Org Biomol Chem; 2014 Jan; 12(4):673-81. PubMed ID: 24302226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93.
    Kim K; Plapp BV
    Chem Biol Interact; 2017 Oct; 276():77-87. PubMed ID: 28025168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols.
    Toyama H; Fujii A; Matsushita K; Shinagawa E; Ameyama M; Adachi O
    J Bacteriol; 1995 May; 177(9):2442-50. PubMed ID: 7730276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction.
    Patel JM; Musa MM; Rodriguez L; Sutton DA; Popik VV; Phillips RS
    Org Biomol Chem; 2014 Aug; 12(31):5905-10. PubMed ID: 24984815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.