BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32060740)

  • 21. Task-dependent modulation of corticospinal excitability and inhibition following strength training.
    Siddique U; Rahman S; Frazer A; Leung M; Pearce AJ; Kidgell DJ
    J Electromyogr Kinesiol; 2020 Jun; 52():102411. PubMed ID: 32244044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corticospinal adaptations following resistance training and its relationship with strength: A systematic review and multivariate meta-analysis.
    Gómez-Feria J; Martín-Rodríguez JF; Mir P
    Neurosci Biobehav Rev; 2023 Sep; 152():105289. PubMed ID: 37353049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex.
    Peinemann A; Reimer B; Löer C; Quartarone A; Münchau A; Conrad B; Siebner HR
    Clin Neurophysiol; 2004 Jul; 115(7):1519-26. PubMed ID: 15203053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heavy-resistance exercise-induced increases in jump performance are not explained by changes in neuromuscular function.
    Thomas K; Toward A; West DJ; Howatson G; Goodall S
    Scand J Med Sci Sports; 2017 Jan; 27(1):35-44. PubMed ID: 26639349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strength training reduces intracortical inhibition.
    Weier AT; Pearce AJ; Kidgell DJ
    Acta Physiol (Oxf); 2012 Oct; 206(2):109-19. PubMed ID: 22642686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Time-Course of Acute Changes in Corticospinal Excitability, Intra-Cortical Inhibition and Facilitation Following a Single-Session Heavy Strength Training of the Biceps Brachii.
    Latella C; Hendy AM; Pearce AJ; VanderWesthuizen D; Teo WP
    Front Hum Neurosci; 2016; 10():607. PubMed ID: 27990108
    [No Abstract]   [Full Text] [Related]  

  • 27. Whole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials.
    Sato D; Yamashiro K; Onishi H; Yasuhiro B; Shimoyama Y; Maruyama A
    J Neurophysiol; 2015 Feb; 113(3):822-33. PubMed ID: 25376780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans.
    Carroll TJ; Barton J; Hsu M; Lee M
    Acta Physiol (Oxf); 2009 Oct; 197(2):161-73. PubMed ID: 19392872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulations of corticospinal excitability following rapid ankle dorsiflexion in skill- and endurance-trained athletes.
    Hu N; Avela J; Kidgell DJ; Piirainen JM; Walker S
    Eur J Appl Physiol; 2022 Sep; 122(9):2099-2109. PubMed ID: 35729431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corticospinal properties following short-term strength training of an intrinsic hand muscle.
    Kidgell DJ; Pearce AJ
    Hum Mov Sci; 2010 Oct; 29(5):631-41. PubMed ID: 20400192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor cortical and corticospinal function differ during an isometric squat compared with isometric knee extension.
    Brownstein CG; Ansdell P; Škarabot J; Frazer A; Kidgell D; Howatson G; Goodall S; Thomas K
    Exp Physiol; 2018 Sep; 103(9):1251-1263. PubMed ID: 29928769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strength-trained adults demonstrate greater corticoreticular activation versus untrained controls.
    Akalu Y; Tallent J; Frazer AK; Siddique U; Rostami M; Vallance P; Howatson G; Walker S; Kidgell DJ
    Eur J Neurosci; 2024 May; 59(9):2336-2352. PubMed ID: 38419404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.
    Kumru H; Albu S; Rothwell J; Leon D; Flores C; Opisso E; Tormos JM; Valls-Sole J
    Clin Neurophysiol; 2017 Oct; 128(10):2043-2047. PubMed ID: 28858700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortical, Corticospinal, and Reticulospinal Contributions to Strength Training.
    Glover IS; Baker SN
    J Neurosci; 2020 Jul; 40(30):5820-5832. PubMed ID: 32601242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days.
    Christiansen L; Madsen MJ; Bojsen-Møller E; Thomas R; Nielsen JB; Lundbye-Jensen J
    Brain Stimul; 2018; 11(2):346-357. PubMed ID: 29187320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strength training of one limb increases corticomotor excitability projecting to the contralateral homologous limb.
    Kidgell DJ; Stokes MA; Pearce AJ
    Motor Control; 2011 Apr; 15(2):247-66. PubMed ID: 21628728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 30 Hz theta-burst stimulation over primary somatosensory cortex modulates corticospinal output to the hand.
    Jacobs MF; Tsang P; Lee KG; Asmussen MJ; Zapallow CM; Nelson AJ
    Brain Stimul; 2014; 7(2):269-74. PubMed ID: 24486137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity.
    Frazer A; Williams J; Spittles M; Rantalainen T; Kidgell D
    Muscle Nerve; 2016 Nov; 54(5):903-913. PubMed ID: 27065472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.