These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32060740)

  • 41. Pulsed Facilitation of Corticospinal Excitability by the Sensorimotor μ-Alpha Rhythm.
    Bergmann TO; Lieb A; Zrenner C; Ziemann U
    J Neurosci; 2019 Dec; 39(50):10034-10043. PubMed ID: 31685655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D; Romero-Arenas S; Lundbye-Jensen J; Hortobágyi T; Márquez G
    J Appl Physiol (1985); 2019 Oct; 127(4):1128-1139. PubMed ID: 31436513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians.
    Nordstrom MA; Butler SL
    Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unihemispheric concurrent dual-site cathodal transcranial direct current stimulation: the effects on corticospinal excitability.
    Vaseghi B; Zoghi M; Jaberzadeh S
    Eur J Neurosci; 2016 May; 43(9):1161-72. PubMed ID: 26946332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Task-specific strength increases after lower-limb compound resistance training occurred in the absence of corticospinal changes in vastus lateralis.
    Ansdell P; Brownstein CG; Škarabot J; Angius L; Kidgell D; Frazer A; Hicks KM; Durbaba R; Howatson G; Goodall S; Thomas K
    Exp Physiol; 2020 Jul; 105(7):1132-1150. PubMed ID: 32363636
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training.
    Latella C; Kidgell DJ; Pearce AJ
    Eur J Appl Physiol; 2012 Aug; 112(8):3097-107. PubMed ID: 22200796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Maintenance of balance between motor cortical excitation and inhibition after long-term training.
    Dai W; Pi YL; Ni Z; Tan XY; Zhang J; Wu Y
    Neuroscience; 2016 Nov; 336():114-122. PubMed ID: 27600949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males.
    Nicolini C; Toepp S; Harasym D; Michalski B; Fahnestock M; Gibala MJ; Nelson AJ
    Physiol Rep; 2019 Jun; 7(11):e14140. PubMed ID: 31175708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study.
    Cash RF; Ziemann U; Murray K; Thickbroom GW
    J Neurophysiol; 2010 Jan; 103(1):511-8. PubMed ID: 19923244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Behavioural exposure and sleep do not modify corticospinal and intracortical excitability in the human motor system.
    Doeltgen SH; Ridding MC
    Clin Neurophysiol; 2010 Mar; 121(3):448-52. PubMed ID: 20064743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training.
    Pearce AJ; Hendy A; Bowen WA; Kidgell DJ
    Scand J Med Sci Sports; 2013 Dec; 23(6):740-8. PubMed ID: 22429184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An acute bout of exercise modulates both intracortical and interhemispheric excitability.
    Neva JL; Brown KE; Mang CS; Francisco BA; Boyd LA
    Eur J Neurosci; 2017 May; 45(10):1343-1355. PubMed ID: 28370664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anodal Transcranial Direct Current Stimulation Prolongs the Cross-education of Strength and Corticomotor Plasticity.
    Hendy AM; Teo WP; Kidgell DJ
    Med Sci Sports Exerc; 2015 Sep; 47(9):1788-97. PubMed ID: 25551405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation.
    Latella C; Goodwill AM; Muthalib M; Hendy AM; Major B; Nosaka K; Teo WP
    Scand J Med Sci Sports; 2019 Mar; 29(3):369-379. PubMed ID: 30403428
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males.
    Goodall S; Howatson G; Thomas K
    Exp Brain Res; 2018 Feb; 236(2):463-473. PubMed ID: 29214392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.
    Rivera-Urbina GN; Batsikadze G; Molero-Chamizo A; Paulus W; Kuo MF; Nitsche MA
    Eur J Neurosci; 2015 Mar; 41(6):845-55. PubMed ID: 25645274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increasing mediolateral standing sway is associated with increasing corticospinal excitability, and decreasing M1 inhibition and facilitation.
    Nandi T; Fisher BE; Hortobágyi T; Salem GJ
    Gait Posture; 2018 Feb; 60():135-140. PubMed ID: 29202358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cross-education of muscular strength is facilitated by homeostatic plasticity.
    Frazer AK; Williams J; Spittle M; Kidgell DJ
    Eur J Appl Physiol; 2017 Apr; 117(4):665-677. PubMed ID: 28243779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction.
    Uehara K; Morishita T; Kubota S; Funase K
    Behav Brain Res; 2013 Mar; 240():33-45. PubMed ID: 23174210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.