BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32060764)

  • 1. Enhanced rhamnolipids production in Pseudomonas aeruginosa SG by selectively blocking metabolic bypasses of glycosyl and fatty acid precursors.
    Lei L; Zhao F; Han S; Zhang Y
    Biotechnol Lett; 2020 Jun; 42(6):997-1002. PubMed ID: 32060764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.
    Wang S; Yu S; Zhang Z; Wei Q; Yan L; Ai G; Liu H; Ma LZ
    Appl Environ Microbiol; 2014 Nov; 80(21):6724-32. PubMed ID: 25172852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC
    J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery.
    Zhao F; Wang Q; Zhang Y; Lei L
    Microb Cell Fact; 2021 May; 20(1):103. PubMed ID: 34016105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon.
    Gutiérrez-Gómez U; Soto-Aceves MP; Servín-González L; Soberón-Chávez G
    Biotechnol Lett; 2018 Dec; 40(11-12):1561-1566. PubMed ID: 30264296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications.
    Maier RM; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):625-33. PubMed ID: 11131386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Marsudi S; Unno H; Hori K
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):955-61. PubMed ID: 18299827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis.
    Funston SJ; Tsaousi K; Smyth TJ; Twigg MS; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8443-8454. PubMed ID: 29043376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose metabolism in Pseudomonas aeruginosa is cyclic when producing Polyhydroxyalkanoates and Rhamnolipids.
    de Oliveira RD; Novello V; da Silva LF; Gomez JGC; Le Roux GAC
    J Biotechnol; 2021 Dec; 342():54-63. PubMed ID: 34687809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants.
    Abdel-Mawgoud AM; Lépine F; Déziel E
    Chem Biol; 2014 Jan; 21(1):156-64. PubMed ID: 24374163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants.
    Koch AK; Käppeli O; Fiechter A; Reiser J
    J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of rhamnolipids by Pseudomonas aeruginosa.
    Soberón-Chávez G; Lépine F; Déziel E
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):718-25. PubMed ID: 16160828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Characterization of Pseudomonas aeruginosa KT1115, a High Di-rhamnolipid-Producing Strain with Strong Oils Metabolizing Ability.
    Liu S; Xu N; Liu H; Zhou J; Xin F; Zhang W; Qian X; Jiang M; Dong W
    Curr Microbiol; 2020 Aug; 77(8):1890-1895. PubMed ID: 32356168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids.
    Zhao F; Wu Y; Wang Q; Zheng M; Cui Q
    Microb Cell Fact; 2021 Sep; 20(1):185. PubMed ID: 34556134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.