BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 32060847)

  • 1. CCL21 Programs Immune Activity in Tumor Microenvironment.
    Sharma S; Kadam P; Dubinett S
    Adv Exp Med Biol; 2020; 1231():67-78. PubMed ID: 32060847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemokine C-C motif ligand 21 synergized with programmed death-ligand 1 blockade restrains tumor growth.
    Chen Q; Yin H; Pu N; Zhang J; Zhao G; Lou W; Wu W
    Cancer Sci; 2021 Nov; 112(11):4457-4469. PubMed ID: 34402138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of immune escape in the cancer immune cycle.
    Tang S; Ning Q; Yang L; Mo Z; Tang S
    Int Immunopharmacol; 2020 Sep; 86():106700. PubMed ID: 32590316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase I Trial of Intratumoral Injection of
    Lee JM; Lee MH; Garon E; Goldman JW; Salehi-Rad R; Baratelli FE; Schaue D; Wang G; Rosen F; Yanagawa J; Walser TC; Lin Y; Park SJ; Adams S; Marincola FM; Tumeh PC; Abtin F; Suh R; Reckamp KL; Lee G; Wallace WD; Lee S; Zeng G; Elashoff DA; Sharma S; Dubinett SM
    Clin Cancer Res; 2017 Aug; 23(16):4556-4568. PubMed ID: 28468947
    [No Abstract]   [Full Text] [Related]  

  • 5. CCL21-DC in situ vaccination in murine NSCLC overcomes resistance to immunotherapy and generates systemic tumor-specific immunity.
    Salehi-Rad R; Lim RJ; Du Y; Tran LM; Li R; Ong SL; Ling Huang Z; Dumitras C; Zhang T; Park SJ; Crosson W; Kahangi B; Abascal J; Seet C; Oh M; Shabihkhani M; Paul M; Krysan K; Lisberg AE; Garon EB; Liu B; Dubinett SM
    J Immunother Cancer; 2023 Sep; 11(9):. PubMed ID: 37730274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy.
    Zhu S; Yang N; Wu J; Wang X; Wang W; Liu YJ; Chen J
    Pharmacol Res; 2020 Sep; 159():104980. PubMed ID: 32504832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunotherapy and tumor microenvironment.
    Tang H; Qiao J; Fu YX
    Cancer Lett; 2016 Jan; 370(1):85-90. PubMed ID: 26477683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells.
    Hurwitz AA; Watkins SK
    Cancer Immunol Immunother; 2012 Feb; 61(2):289-293. PubMed ID: 22237887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruiting T cells in cancer immunotherapy.
    Yost KE; Chang HY; Satpathy AT
    Science; 2021 Apr; 372(6538):130-131. PubMed ID: 33833111
    [No Abstract]   [Full Text] [Related]  

  • 10. Empowering dendritic cell cancer vaccination: the role of combinatorial strategies.
    Galati D; Zanotta S
    Cytotherapy; 2018 Nov; 20(11):1309-1323. PubMed ID: 30360963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment.
    Gajewski TF; Corrales L; Williams J; Horton B; Sivan A; Spranger S
    Adv Exp Med Biol; 2017; 1036():19-31. PubMed ID: 29275462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.
    Balta E; Wabnitz GH; Samstag Y
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune Checkpoint Blockade Enhances Immune Activity of Therapeutic Lung Cancer Vaccine.
    Kadam P; Singh RP; Davoodi M; Lee JM; John MS; Sharma S
    Vaccines (Basel); 2020 Nov; 8(4):. PubMed ID: 33167311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tumour glyco-code as a novel immune checkpoint for immunotherapy.
    RodrÍguez E; Schetters STT; van Kooyk Y
    Nat Rev Immunol; 2018 Mar; 18(3):204-211. PubMed ID: 29398707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetics and immunotherapy: The current state of play.
    Dunn J; Rao S
    Mol Immunol; 2017 Jul; 87():227-239. PubMed ID: 28511092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion.
    DeVito NC; Plebanek MP; Theivanthiran B; Hanks BA
    Front Immunol; 2019; 10():2876. PubMed ID: 31921140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune metabolism in PD-1 blockade-based cancer immunotherapy.
    Kumar A; Chamoto K
    Int Immunol; 2021 Jan; 33(1):17-26. PubMed ID: 32622347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy.
    van Gulijk M; Dammeijer F; Aerts JGJV; Vroman H
    Front Immunol; 2018; 9():2759. PubMed ID: 30568653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.