These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32061037)

  • 1. Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations.
    Carvalho RP; Marchiori CFN; Brandell D; Araujo CM
    ChemSusChem; 2020 May; 13(9):2402-2409. PubMed ID: 32061037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries.
    Lu Y; Zhang Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216047. PubMed ID: 36445787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-potential reversible Li deintercalation in a substituted tetrahydroxy-p-benzoquinone dilithium salt: an experimental and theoretical study.
    Barrès AL; Geng J; Bonnard G; Renault S; Gottis S; Mentré O; Frayret C; Dolhem F; Poizot P
    Chemistry; 2012 Jul; 18(28):8800-12. PubMed ID: 22689440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Metastable Phases During Lithiation of Organic Battery Electrode Materials.
    Carvalho RP; Alhanash M; Marchiori CFN; Brandell D; Araujo CM
    ChemSusChem; 2022 Jun; 15(12):e202200354. PubMed ID: 35389531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-Ion Batteries.
    Alfaruqi MH; Kim S; Park S; Lee S; Lee J; Hwang JY; Sun YK; Kim J
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16376-16386. PubMed ID: 32186369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry.
    Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.
    Park JH; Liu T; Kim KC; Lee SW; Jang SS
    ChemSusChem; 2017 Apr; 10(7):1584-1591. PubMed ID: 28199064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries.
    Li Q; Wang H; Wang HG; Si Z; Li C; Bai J
    ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.
    Longo RC; Kong FT; KC S; Park MS; Yoon J; Yeon DH; Park JH; Doo SG; Cho K
    Phys Chem Chem Phys; 2014 Jun; 16(23):11218-27. PubMed ID: 24776820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the Anchoring and Catalytic Effects of VO
    Wang D; Zhao S; Li F; He L; Zhao Y; Zhao H; Liu Y; Wei Y; Chen G
    ChemSusChem; 2019 Oct; 12(20):4671-4678. PubMed ID: 31429193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin.
    Zheng Y; Ji H; Liu J; Wang Z; Zhou J; Qian T; Yan C
    Nano Lett; 2022 Apr; 22(8):3473-3479. PubMed ID: 35426684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and advances of organic electrode materials for sustainable secondary batteries.
    Shi R; Jiao S; Yue Q; Gu G; Zhang K; Zhao Y
    Exploration (Beijing); 2022 Aug; 2(4):20220066. PubMed ID: 37325604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation.
    Wang Z; Li S; Zhang Y; Xu H
    Phys Chem Chem Phys; 2018 Mar; 20(11):7447-7456. PubMed ID: 29488988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.