These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32061037)

  • 21. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Cyclooctatetraene-Based Aliphatic Polymers as Battery Materials: Synthesis, Electrochemical, and Thermal Characterization Supported by DFT Calculations.
    Speer ME; Sterzenbach C; Esser B
    Chempluschem; 2017 Oct; 82(10):1274-1281. PubMed ID: 31957995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery.
    Yao CJ; Wu Z; Xie J; Yu F; Guo W; Xu ZJ; Li DS; Zhang S; Zhang Q
    ChemSusChem; 2020 May; 13(9):2457-2463. PubMed ID: 31782976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights on Redox Properties of Sumanene Derivatives for High-Performance Organic Cathodes.
    Jung KH; Kim KC
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8333-8341. PubMed ID: 31977171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries.
    Lüder J; Manzhos S
    Front Chem; 2020; 8():83. PubMed ID: 32154214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Screening for Design of Optimal Coating Materials to Suppress Gas Evolution in Li-Ion Battery Cathodes.
    Min K; Seo SW; Choi B; Park K; Cho E
    ACS Appl Mater Interfaces; 2017 May; 9(21):17822-17834. PubMed ID: 28472880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the Lithiation of the Sn Anode for High-Performance Li-Ion Batteries with Exploration of Novel Li-Sn Compounds at Ambient and Moderately High Pressure.
    Sen R; Johari P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40197-40206. PubMed ID: 29069896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity.
    Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance.
    Wang J; Zhao H; Xu L; Yang Y; He G; Du Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35469-35476. PubMed ID: 30252431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling electrochemical properties of LiMn[Formula: see text]Co[Formula: see text]BO[Formula: see text] for cathode materials in lithium-ion rechargeable batteries.
    Nhapulo SL; de Almeida JS
    Sci Rep; 2021 Jun; 11(1):11858. PubMed ID: 34088918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries.
    Hu Y; Tang W; Yu Q; Yang C; Fan C
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32987-32993. PubMed ID: 31429536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the lithiation reaction of niobium oxide: structural and electronic properties of Li(1.714)Nb2O5.
    Catti M; Ghaani MR
    Phys Chem Chem Phys; 2014 Jan; 16(4):1385-92. PubMed ID: 24297157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trinitroaromatic Salts as High-Energy-Density Organic Cathode Materials for Li-Ion Batteries.
    Wang Y; Zhao X; Wang Y; Qiu W; Song E; Wang S; Liu J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1129-1137. PubMed ID: 36534742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unraveling the effects of inter-site Hubbard interactions in spinel Li-ion cathode materials.
    Timrov I; Kotiuga M; Marzari N
    Phys Chem Chem Phys; 2023 Mar; 25(13):9061-9072. PubMed ID: 36919455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.
    Zhong Z; Ouyang C; Shi S; Lei M
    Chemphyschem; 2008 Oct; 9(14):2104-8. PubMed ID: 18729122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.