These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 32061148)

  • 1. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors.
    Zhu J; Roscow J; Chandrasekaran S; Deng L; Zhang P; He T; Wang K; Huang L
    ChemSusChem; 2020 Mar; 13(6):1275-1295. PubMed ID: 32061148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass-Derived Carbon Materials as Prospective Electrodes for High-Energy Lithium- and Sodium-Ion Capacitors.
    Natarajan S; Lee YS; Aravindan V
    Chem Asian J; 2019 Apr; 14(7):936-951. PubMed ID: 30672661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.
    Li F; Zhou Z
    Small; 2018 Feb; 14(6):. PubMed ID: 29266802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances of Cellulose-Based Materials and Their Promising Application in Sodium-Ion Batteries and Capacitors.
    Zhang T; Yang L; Yan X; Ding X
    Small; 2018 Nov; 14(47):e1802444. PubMed ID: 30198091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges facing lithium batteries and electrical double-layer capacitors.
    Choi NS; Chen Z; Freunberger SA; Ji X; Sun YK; Amine K; Yushin G; Nazar LF; Cho J; Bruce PG
    Angew Chem Int Ed Engl; 2012 Oct; 51(40):9994-10024. PubMed ID: 22965900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Biomass-Derived Carbon Materials for Sodium-Ion Energy Storage Devices.
    Yan M; Qin Y; Wang L; Song M; Han D; Jin Q; Zhao S; Zhao M; Li Z; Wang X; Meng L; Wang X
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview on the Development of Electrochemical Capacitors and Batteries - Part I.
    Martins VL; Neves HR; Monje IE; Leite MM; Oliveira PFM; Antoniassi RM; Chauque S; Morais WG; Melo EC; Obana TT; Souza BL; Torresi RM
    An Acad Bras Cienc; 2020; 92(2):e20200796. PubMed ID: 32638869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage.
    Zhang Y; Zhang L; Lv T; Chu PK; Huo K
    ChemSusChem; 2020 Mar; 13(6):1114-1154. PubMed ID: 32150349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-Derived Hard Carbon for Sodium-Ion Batteries: Basic Research and Industrial Application.
    Zhong B; Liu C; Xiong D; Cai J; Li J; Li D; Cao Z; Song B; Deng W; Peng H; Hou H; Zou G; Ji X
    ACS Nano; 2024 Jul; 18(26):16468-16488. PubMed ID: 38900494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries.
    Long W; Fang B; Ignaszak A; Wu Z; Wang YJ; Wilkinson D
    Chem Soc Rev; 2017 Nov; 46(23):7176-7190. PubMed ID: 29075713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging chemistry of sodium ion batteries for electrochemical energy storage.
    Kundu D; Talaie E; Duffort V; Nazar LF
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3431-48. PubMed ID: 25653194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage.
    Liu T; Kavian R; Chen Z; Cruz SS; Noda S; Lee SW
    Nanoscale; 2016 Feb; 8(6):3671-7. PubMed ID: 26809548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.
    Simon P; Gogotsi Y
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3457-67. PubMed ID: 20566518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetric Electrodes for Electrochemical Energy-Storage Devices.
    Zhang L; Dou SX; Liu HK; Huang Y; Hu X
    Adv Sci (Weinh); 2016 Dec; 3(12):1600115. PubMed ID: 27981003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MXene-Based Materials for Electrochemical Sodium-Ion Storage.
    Ma P; Fang D; Liu Y; Shang Y; Shi Y; Yang HY
    Adv Sci (Weinh); 2021 Jun; 8(11):e2003185. PubMed ID: 34105289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-ion capacitors: Materials, Mechanism, and Challenges.
    Zhang Y; Jiang J; An Y; Wu L; Dou H; Zhang J; Zhang Y; Wu S; Dong M; Zhang X; Guo Z
    ChemSusChem; 2020 May; 13(10):2522-2539. PubMed ID: 32045509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.