BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32061181)

  • 1. Machine Learning in Mass Spectrometric Analysis of DIA Data.
    Xu LL; Young A; Zhou A; Röst HL
    Proteomics; 2020 Nov; 20(21-22):e1900352. PubMed ID: 32061181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-Driven Tool for Cross-Run Ion Selection and Peak-Picking in Quantitative Proteomics with Data-Independent Acquisition LC-MS/MS.
    Yan B; Shi M; Cai S; Su Y; Chen R; Huang C; Chen DDY
    Anal Chem; 2023 Nov; 95(45):16558-16566. PubMed ID: 37906674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry ("HIAP-DIA").
    Zhou Y; Tan Z; Xue P; Wang Y; Li X; Guan F
    Proteomics; 2021 Mar; 21(5):e2000264. PubMed ID: 33460299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concomitant investigation of crustacean amphipods lipidome and metabolome during the molting cycle by Zeno SWATH data-independent acquisition coupled with electron activated dissociation and machine learning.
    Brunet TA; Clément Y; Calabrese V; Lemoine J; Geffard O; Chaumot A; Degli-Esposti D; Salvador A; Ayciriex S
    Anal Chim Acta; 2024 May; 1304():342533. PubMed ID: 38637034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform.
    Yu F; Teo GC; Kong AT; Fröhlich K; Li GX; Demichev V; Nesvizhskii AI
    Nat Commun; 2023 Jul; 14(1):4154. PubMed ID: 37438352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial.
    Ludwig C; Gillet L; Rosenberger G; Amon S; Collins BC; Aebersold R
    Mol Syst Biol; 2018 Aug; 14(8):e8126. PubMed ID: 30104418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut.
    Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV
    Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Age of Data-Driven Proteomics: How Machine Learning Enables Novel Workflows.
    Bouwmeester R; Gabriels R; Van Den Bossche T; Martens L; Degroeve S
    Proteomics; 2020 Nov; 20(21-22):e1900351. PubMed ID: 32267083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis.
    Kawashima Y; Watanabe E; Umeyama T; Nakajima D; Hattori M; Honda K; Ohara O
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample Size-Comparable Spectral Library Enhances Data-Independent Acquisition-Based Proteome Coverage of Low-Input Cells.
    Siyal AA; Chen ES; Chan HJ; Kitata RB; Yang JC; Tu HL; Chen YJ
    Anal Chem; 2021 Dec; 93(51):17003-17011. PubMed ID: 34904835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DIA Proteomics and Machine Learning for the Fast Identification of Bacterial Species in Biological Samples.
    Roux-Dalvai F; Leclercq M; Gotti C; Droit A
    Methods Mol Biol; 2022; 2456():299-317. PubMed ID: 35612751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Dependent-Independent Acquisition (DDIA) Proteomics.
    Guan S; Taylor PP; Han Z; Moran MF; Ma B
    J Proteome Res; 2020 Aug; 19(8):3230-3237. PubMed ID: 32539411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-Independent Acquisition Mass Spectrometry-Based Deep Proteome Analysis for Hydrophobic Proteins from Dried Blood Spots Enriched by Sodium Carbonate Precipitation.
    Nakajima D; Ohara O; Kawashima Y
    Methods Mol Biol; 2022; 2420():39-52. PubMed ID: 34905164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard.
    Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A
    J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
    Yang Y; Tian R
    Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-MS
    Souza GHMF; Guest PC; Martins-de-Souza D
    Methods Mol Biol; 2017; 1546():57-73. PubMed ID: 27896757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DIA-MS
    Reis-de-Oliveira G; Carregari VC; Martins-de-Souza D
    Methods Mol Biol; 2021; 2228():341-352. PubMed ID: 33950502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome.
    Li KW; Gonzalez-Lozano MA; Koopmans F; Smit AB
    Front Mol Neurosci; 2020; 13():564446. PubMed ID: 33424549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.