These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32061494)
1. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Prasad S; Singh A; Korres NE; Rathore D; Sevda S; Pant D Bioresour Technol; 2020 May; 303():122964. PubMed ID: 32061494 [TBL] [Abstract][Full Text] [Related]
2. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions. Kashif M; Awan MB; Nawaz S; Amjad M; Talib B; Farooq M; Nizami AS; Rehan M J Environ Manage; 2020 Feb; 256():109924. PubMed ID: 31818740 [TBL] [Abstract][Full Text] [Related]
3. The environmental sustainability of anaerobic digestion as a biomass valorization technology. De Meester S; Demeyer J; Velghe F; Peene A; Van Langenhove H; Dewulf J Bioresour Technol; 2012 Oct; 121():396-403. PubMed ID: 22864176 [TBL] [Abstract][Full Text] [Related]
4. Environmental assessment of two different crop systems in terms of biomethane potential production. Bacenetti J; Fusi A; Negri M; Guidetti R; Fiala M Sci Total Environ; 2014 Jan; 466-467():1066-77. PubMed ID: 23994820 [TBL] [Abstract][Full Text] [Related]
5. Process modeling, environmental and economic sustainability of the valorization of whey and eucalyptus residues for resveratrol biosynthesis. Arias A; Costa CE; Feijoo G; Moreira MT; Domingues L Waste Manag; 2023 Dec; 172():226-234. PubMed ID: 37924598 [TBL] [Abstract][Full Text] [Related]
6. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Hiloidhari M; Baruah DC; Singh A; Kataki S; Medhi K; Kumari S; Ramachandra TV; Jenkins BM; Thakur IS Bioresour Technol; 2017 Oct; 242():218-226. PubMed ID: 28343863 [TBL] [Abstract][Full Text] [Related]
7. Social life cycle assessment and participatory approaches: A methodological proposal applied to citrus farming in Southern Italy. De Luca AI; Iofrida N; Strano A; Falcone G; Gulisano G Integr Environ Assess Manag; 2015 Jul; 11(3):383-96. PubMed ID: 25556911 [TBL] [Abstract][Full Text] [Related]
8. Environmental and social life cycle assessment of urban water systems: The case of Mexico City. García-Sánchez M; Güereca LP Sci Total Environ; 2019 Nov; 693():133464. PubMed ID: 31362220 [TBL] [Abstract][Full Text] [Related]
10. Life-Cycle Assessment (LCA) Analysis of Algal Fuels. Hosseinzadeh-Bandbafha H; Tabatabaei M; Aghbashlo M; Sulaiman A; Ghassemi A Methods Mol Biol; 2020; 1980():121-151. PubMed ID: 30838603 [TBL] [Abstract][Full Text] [Related]
11. Sustainable energy from waste organic matters via efficient microbial processes. Srivastava RK; Shetti NP; Reddy KR; Aminabhavi TM Sci Total Environ; 2020 Jun; 722():137927. PubMed ID: 32208271 [TBL] [Abstract][Full Text] [Related]
12. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment? Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583 [TBL] [Abstract][Full Text] [Related]
13. Towards optimal trade-offs between material and energy recovery for green waste. Inghels D; Dullaert W; Aghezzaf EH; Heijungs R Waste Manag; 2019 Jun; 93():100-111. PubMed ID: 31235046 [TBL] [Abstract][Full Text] [Related]
14. Comparative environmental and economic life cycle assessment of phytoremediation of dredged sediment using Arundo Donax, integrated with biomass to bioenergy valorization chain. Soleimani T; Sordes F; Techer I; Junqua G; Hayek M; Salgues M; Souche JC Sci Total Environ; 2023 Dec; 903():166160. PubMed ID: 37574070 [TBL] [Abstract][Full Text] [Related]
15. Life-cycle implications of using crop residues for various energy demands in China. Lu W; Zhang T Environ Sci Technol; 2010 May; 44(10):4026-32. PubMed ID: 20426437 [TBL] [Abstract][Full Text] [Related]
16. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Gallejones P; Pardo G; Aizpurua A; del Prado A Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117 [TBL] [Abstract][Full Text] [Related]
17. Use of life cycle assessment as decision-support tool for water reuse and handling of residues at a Danish industrial laundry. Jørgensen KR; Villanueva A; Wenzel H Waste Manag Res; 2004 Oct; 22(5):334-45. PubMed ID: 15560437 [TBL] [Abstract][Full Text] [Related]
18. Life cycle assessment of sustainable raw material acquisition for functional magnetite bionanoparticle production. Sadhukhan J; Joshi N; Shemfe M; Lloyd JR J Environ Manage; 2017 Sep; 199():116-125. PubMed ID: 28527738 [TBL] [Abstract][Full Text] [Related]
19. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model. Liang S; Zhang T; Xu Y Waste Manag; 2012 Mar; 32(3):603-12. PubMed ID: 22100716 [TBL] [Abstract][Full Text] [Related]
20. Environmental impact of biomass based polygeneration - A case study through life cycle assessment. Jana K; De S Bioresour Technol; 2017 Mar; 227():256-265. PubMed ID: 28039825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]