These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32061931)

  • 41. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes.
    Juette MF; Carelli JD; Rundlet EJ; Brown A; Shao S; Ferguson A; Wasserman MR; Holm M; Taunton J; Blanchard SC
    Elife; 2022 Oct; 11():. PubMed ID: 36264623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stoichiometry of the EF-Tu.GTP complex with aminoacyl-tRNA: ternary of quinternary?
    Leberman R
    FEBS Lett; 1995 Jan; 358(1):71-2. PubMed ID: 7821433
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA.
    Nissen P; Thirup S; Kjeldgaard M; Nyborg J
    Structure; 1999 Feb; 7(2):143-56. PubMed ID: 10368282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex.
    Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M
    Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu.
    Faulhammer HG; Joshi RL
    FEBS Lett; 1987 Jun; 217(2):203-11. PubMed ID: 3297780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactivity of essential histidine residues in EF-Tu.GDP and EF-Tu.GTP from Escherichia coli.
    Jonák J; Rychlík I
    Biochim Biophys Acta; 1987 Jan; 908(1):97-102. PubMed ID: 3542047
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy.
    Valle M; Zavialov A; Li W; Stagg SM; Sengupta J; Nielsen RC; Nissen P; Harvey SC; Ehrenberg M; Frank J
    Nat Struct Biol; 2003 Nov; 10(11):899-906. PubMed ID: 14566331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding.
    Schrader JM; Chapman SJ; Uhlenbeck OC
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5215-20. PubMed ID: 21402928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of animal mitochondrial EF-Tu.EF-Ts with aminoacyl-tRNA, guanine nucleotides, and ribosomes.
    Schwartzbach CJ; Spremulli LL
    J Biol Chem; 1991 Sep; 266(25):16324-30. PubMed ID: 1885567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Elongation factor EF-Ts interacts with the aminoacyl-tRNA.EF-Tu.GTP complex].
    Kireeva ML; Bubunenko MG; Bushueva TL
    Mol Biol (Mosk); 1992; 26(1):104-9. PubMed ID: 1508161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
    Pape T; Wintermeyer W; Rodnina M
    EMBO J; 1999 Jul; 18(13):3800-7. PubMed ID: 10393195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.
    Nissen P; Kjeldgaard M; Thirup S; Polekhina G; Reshetnikova L; Clark BF; Nyborg J
    Science; 1995 Dec; 270(5241):1464-72. PubMed ID: 7491491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains.
    Lai J; Ghaemi Z; Luthey-Schulten Z
    Biochemistry; 2017 Nov; 56(45):5972-5979. PubMed ID: 29045140
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA.
    Kakhniashvili DG; Smailov SK; Gavrilova LP
    FEBS Lett; 1986 Feb; 196(1):103-7. PubMed ID: 3510907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conformational changes of aminoacyl-tRNA and uncharged tRNA upon complex formation with polypeptide chain elongation factor Tu.
    Haruki M; Matsumoto R; Hara-Yokoyama M; Miyazawa T; Yokoyama S
    FEBS Lett; 1990 Apr; 263(2):361-4. PubMed ID: 2335240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recognition and selection of tRNA in translation.
    Rodnina MV; Gromadski KB; Kothe U; Wieden HJ
    FEBS Lett; 2005 Feb; 579(4):938-42. PubMed ID: 15680978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA.
    Schmeing TM; Voorhees RM; Kelley AC; Gao YG; Murphy FV; Weir JR; Ramakrishnan V
    Science; 2009 Oct; 326(5953):688-694. PubMed ID: 19833920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.