BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 32061938)

  • 1. Systems Level Understanding of Circadian Integration with Cell Physiology.
    Morris AR; Stanton DL; Roman D; Liu AC
    J Mol Biol; 2020 May; 432(12):3547-3564. PubMed ID: 32061938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.
    Maiese K
    Curr Neurovasc Res; 2017; 14(3):299-304. PubMed ID: 28721811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes.
    Maiese K
    Curr Neurovasc Res; 2020; 17(5):765-783. PubMed ID: 33183203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMP-Activated Protein Kinase Regulates Circadian Rhythm by Affecting CLOCK in
    Cho E; Kwon M; Jung J; Kang DH; Jin S; Choi SE; Kang Y; Kim EY
    J Neurosci; 2019 May; 39(18):3537-3550. PubMed ID: 30819799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1.
    Shen Y; Endale M; Wang W; Morris AR; Francey LJ; Harold RL; Hammers DW; Huo Z; Partch CL; Hogenesch JB; Wu ZH; Liu AC
    PLoS Genet; 2021 Nov; 17(11):e1009933. PubMed ID: 34807912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model.
    Singla R; Mishra A; Cao R
    Transl Psychiatry; 2022 Aug; 12(1):355. PubMed ID: 36045116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mTOR signaling regulates central and peripheral circadian clock function.
    Ramanathan C; Kathale ND; Liu D; Lee C; Freeman DA; Hogenesch JB; Cao R; Liu AC
    PLoS Genet; 2018 May; 14(5):e1007369. PubMed ID: 29750810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian clock: linking epigenetics to aging.
    Orozco-Solis R; Sassone-Corsi P
    Curr Opin Genet Dev; 2014 Jun; 26():66-72. PubMed ID: 25033025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose restriction induces AMPK-SIRT1-mediated circadian clock gene Per expression and delays NSCLC progression.
    Li B; Chen Q; Feng Y; Wei T; Zhong Y; Zhang Y; Feng Q
    Cancer Lett; 2023 Nov; 576():216424. PubMed ID: 37778683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders.
    Kauppinen A; Suuronen T; Ojala J; Kaarniranta K; Salminen A
    Cell Signal; 2013 Oct; 25(10):1939-48. PubMed ID: 23770291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics and molecular biology of rhythms in Drosophila and other insects.
    Hall JC
    Adv Genet; 2003; 48():1-280. PubMed ID: 12593455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells.
    Okada Y; Okada M
    Mol Biol Rep; 2020 Feb; 47(2):1021-1032. PubMed ID: 31773385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular and genetic aspects of interactions of the circadian clock and the energy-producing substrate metabolism in mammals].
    Podkolodnaia OA
    Genetika; 2014 Feb; 50(2):125-37. PubMed ID: 25711020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression.
    Li YH; Liu X; Vanselow JT; Zheng H; Schlosser A; Chiu JC
    PLoS Genet; 2019 Jan; 15(1):e1007953. PubMed ID: 30703153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication.
    Gabryelska A; Turkiewicz S; Karuga FF; Sochal M; Strzelecki D; Białasiewicz P
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronopharmacological strategies focused on chrono-drug discovery.
    Ohdo S; Koyanagi S; Matsunaga N
    Pharmacol Ther; 2019 Oct; 202():72-90. PubMed ID: 31173839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The time of metabolism: NAD+, SIRT1, and the circadian clock.
    Bellet MM; Orozco-Solis R; Sahar S; Eckel-Mahan K; Sassone-Corsi P
    Cold Spring Harb Symp Quant Biol; 2011; 76():31-8. PubMed ID: 22179986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation Timers in the Neurospora crassa Circadian Clock.
    Diernfellner ACR; Brunner M
    J Mol Biol; 2020 May; 432(12):3449-3465. PubMed ID: 32305463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian Clock Interaction with HIF1α Mediates Oxygenic Metabolism and Anaerobic Glycolysis in Skeletal Muscle.
    Peek CB; Levine DC; Cedernaes J; Taguchi A; Kobayashi Y; Tsai SJ; Bonar NA; McNulty MR; Ramsey KM; Bass J
    Cell Metab; 2017 Jan; 25(1):86-92. PubMed ID: 27773696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock.
    Goriki A; Hatanaka F; Myung J; Kim JK; Yoritaka T; Tanoue S; Abe T; Kiyonari H; Fujimoto K; Kato Y; Todo T; Matsubara A; Forger D; Takumi T
    PLoS Biol; 2014 Apr; 12(4):e1001839. PubMed ID: 24736997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.