BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32062222)

  • 1. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality.
    Shaddel S; Grini T; Ucar S; Azrague K; Andreassen JP; Østerhus SW
    Water Res; 2020 Apr; 173():115572. PubMed ID: 32062222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization.
    Shaddel S; Grini T; Andreassen JP; Østerhus SW; Ucar S
    Chemosphere; 2020 Oct; 256():126968. PubMed ID: 32428738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.
    Crutchik D; Garrido JM
    Water Sci Technol; 2011; 64(12):2460-7. PubMed ID: 22170842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing efficiency and economics of phosphorus recovery process by customizing the product based on sidestream characteristics - an alternative phosphorus recovery strategy.
    Shaddel S; Ucar S; Andreassen JP; Østerhus SW
    Water Sci Technol; 2019 May; 79(9):1777-1789. PubMed ID: 31241483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources.
    Liu B; Giannis A; Zhang J; Chang VW; Wang JY
    Chemosphere; 2013 Nov; 93(11):2738-47. PubMed ID: 24134888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.
    Siciliano A; De Rosa S
    Environ Technol; 2014; 35(5-8):841-50. PubMed ID: 24645466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of saline water ionic strength on phosphorus recovery from synthetic swine wastewater.
    Zhang Z; Li B; Wicaksana F; Yu W; Young B
    J Environ Sci (China); 2022 Mar; 113():81-91. PubMed ID: 34963552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economic feasibility of phosphorus recovery through struvite from liquid anaerobic digestate of animal waste.
    Min KJ; Park KY
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40703-40714. PubMed ID: 33547611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources.
    Aguado D; Barat R; Bouzas A; Seco A; Ferrer J
    Sci Total Environ; 2019 Jul; 672():88-96. PubMed ID: 30954828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of cost-effective magnesium sources for fluidized struvite crystallization.
    Wang J; Ye X; Zhang Z; Ye ZL; Chen S
    J Environ Sci (China); 2018 Aug; 70():144-153. PubMed ID: 30037401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies.
    Zangarini S; Pepè Sciarria T; Tambone F; Adani F
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):5730-5743. PubMed ID: 31919818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water.
    Li X; Zhao X; Zhang J; Hao J; Zhang Q
    Water Res; 2022 Aug; 221():118678. PubMed ID: 35752092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor.
    Liu X; Hu Z; Mu J; Zang H; Liu L
    Environ Technol; 2014; 35(21-24):2781-7. PubMed ID: 25176481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of phosphorus recovery reactor for enlargement of struvite crystals using seawater as the magnesium source.
    Wongphudphad P; Kemacheevakul P
    Water Sci Technol; 2019 Apr; 79(7):1376-1386. PubMed ID: 31123237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation.
    Martí N; Pastor L; Bouzas A; Ferrer J; Seco A
    Water Res; 2010 Apr; 44(7):2371-9. PubMed ID: 20089291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rift Valley Lake as a potential magnesium source to recover phosphorus from urine.
    Guadie A; Belay A; Liu W; Yesigat A; Hao X; Wang A
    Environ Res; 2020 May; 184():109363. PubMed ID: 32209497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of reactor operation on success of struvite precipitation from synthetic liquors.
    Le Corre KS; Valsami-Jones E; Hobbs P; Parsons SA
    Environ Technol; 2007 Nov; 28(11):1245-56. PubMed ID: 18290534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes.
    Ye ZL; Ghyselbrecht K; Monballiu A; Rottiers T; Sansen B; Pinoy L; Meesschaert B
    Chemosphere; 2018 Nov; 210():867-876. PubMed ID: 30208546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Struvite precipitation in raw and co-digested swine slurries for nutrients recovery in batch reactors.
    Taddeo R; Lepistö R
    Water Sci Technol; 2015; 71(6):892-7. PubMed ID: 25812099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.