These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32062332)

  • 1. Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana.
    Wang Y; Zhao H; Liu C; Cui G; Qu L; Bao M; Wang J; Chan Z; Wang Y
    Plant Physiol Biochem; 2020 Apr; 149():121-131. PubMed ID: 32062332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tulip transcription factor TgWRKY75 activates salicylic acid and abscisic acid biosynthesis to synergistically promote petal senescence.
    Meng L; Yang H; Yang J; Wang Y; Ye T; Xiang L; Chan Z; Wang Y
    J Exp Bot; 2024 Apr; 75(8):2435-2450. PubMed ID: 38243353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip.
    Azad AK; Ishikawa T; Ishikawa T; Sawa Y; Shibata H
    J Exp Bot; 2008; 59(8):2085-95. PubMed ID: 18515833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAC transcription factor TgNAP promotes tulip petal senescence.
    Meng L; Yang H; Xiang L; Wang Y; Chan Z
    Plant Physiol; 2022 Oct; 190(3):1960-1977. PubMed ID: 35900170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.
    Lü P; Zhang C; Liu J; Liu X; Jiang G; Jiang X; Khan MA; Wang L; Hong B; Gao J
    Plant J; 2014 May; 78(4):578-90. PubMed ID: 24589134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression profiles of aquaporin homologues and petal movement during petal development in Tulipa gesneriana.
    Azad AK; Hanawa R; Ishikawa T; Sawa Y; Shibata H
    Physiol Plant; 2013 Jul; 148(3):397-407. PubMed ID: 23088645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and molecular biology of petal senescence.
    van Doorn WG; Woltering EJ
    J Exp Bot; 2008; 59(3):453-80. PubMed ID: 18310084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into the pigment composition and molecular mechanism of flower coloration in tulip (Tulipa gesneriana L.) cultivars with various petal colors.
    Wang Y; Chen L; Yang Q; Hu Z; Guo P; Xie Q; Chen G
    Plant Sci; 2022 Apr; 317():111193. PubMed ID: 35193742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.
    Momonoi K; Yoshida K; Mano S; Takahashi H; Nakamori C; Shoji K; Nitta A; Nishimura M
    Plant J; 2009 Aug; 59(3):437-47. PubMed ID: 19366427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jasmonates are essential factors inducing gummosis in tulips: mode of action of jasmonates focusing on sugar metabolism.
    Skrzypek E; Miyamoto K; Saniewski M; Ueda J
    J Plant Physiol; 2005 May; 162(5):495-505. PubMed ID: 15940867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The swansong of petal cell death: insights into the mechanism and regulation of ethylene-mediated flower senescence.
    Parveen S; Altaf F; Farooq S; Lone ML; Ul Haq A; Tahir I
    J Exp Bot; 2023 Aug; 74(14):3961-3974. PubMed ID: 37280163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing ATG6 and PI3K accelerates petal senescence and reduces flower number and shoot biomass in petunia.
    Lin Y; Jones ML
    Plant Sci; 2021 Jan; 302():110713. PubMed ID: 33288020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factors TgbHLH42-1 and TgbHLH42-2 positively regulate anthocyanin biosynthesis in Tulip (Tulipa gesneriana L.).
    Hu X; Sun T; Liang Z; Zhang H; Fu Q; Wang Y; Chan Z; Xiang L
    Physiol Plant; 2023; 175(3):e13939. PubMed ID: 37243848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers.
    Shibuya K; Yoshioka T; Hashiba T; Satoh S
    J Exp Bot; 2000 Dec; 51(353):2067-73. PubMed ID: 11141180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RhERF113 Functions in Ethylene-Induced Petal Senescence by Modulating Cytokinin Content in Rose.
    Khaskheli AJ; Ahmed W; Ma C; Zhang S; Liu Y; Li Y; Zhou X; Gao J
    Plant Cell Physiol; 2018 Dec; 59(12):2442-2451. PubMed ID: 30101287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis.
    Tsanakas GF; Manioudaki ME; Economou AS; Kalaitzis P
    BMC Genomics; 2014 Jul; 15(1):554. PubMed ID: 24993183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.
    Azad AK; Katsuhara M; Sawa Y; Ishikawa T; Shibata H
    Plant Cell Physiol; 2008 Aug; 49(8):1196-208. PubMed ID: 18567892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mutual regulation between DcEBF1/2 and DcEIL3-1 is involved in ethylene induced petal senescence in carnation (Dianthus caryophyllus L.).
    Zhu C; Huang Z; Sun Z; Feng S; Wang S; Wang T; Yuan X; Zhong L; Cheng Y; Bao M; Zhang F
    Plant J; 2023 May; 114(3):636-650. PubMed ID: 36808165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.).
    In BC; Binder BM; Falbel TG; Patterson SE
    J Exp Bot; 2013 Nov; 64(16):4923-37. PubMed ID: 24078672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory.
    Shibuya K; Shimizu K; Niki T; Ichimura K
    Plant J; 2014 Sep; 79(6):1044-51. PubMed ID: 24961791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.