These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32062427)

  • 1. Relationship between the radial dynamics and the chemical production of a harmonically driven spherical bubble.
    Kalmár C; Klapcsik K; Hegedűs F
    Ultrason Sonochem; 2020 Jun; 64():104989. PubMed ID: 32062427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of chemical mechanisms in sonochemical modelling.
    Kalmár C; Turányi T; Zsély IG; Papp M; Hegedűs F
    Ultrason Sonochem; 2022 Feb; 83():105925. PubMed ID: 35149378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPU accelerated numerical investigation of the spherical stability of an acoustic cavitation bubble excited by dual-frequency.
    Klapcsik K
    Ultrason Sonochem; 2021 Sep; 77():105684. PubMed ID: 34358882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold.
    Hegedűs F; Klapcsik K; Lauterborn W; Parlitz U; Mettin R
    Ultrason Sonochem; 2020 Oct; 67():105067. PubMed ID: 32380373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dataset of exponential growth rate values corresponding non-spherical bubble oscillations under dual-frequency acoustic irradiation.
    Klapcsik K
    Data Brief; 2022 Feb; 40():107810. PubMed ID: 35071706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid.
    Klapcsik K; Hegedűs F
    Ultrason Sonochem; 2019 Jun; 54():256-273. PubMed ID: 30718178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemistry and bubble dynamics.
    Mettin R; Cairós C; Troia A
    Ultrason Sonochem; 2015 Jul; 25():24-30. PubMed ID: 25194210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.
    Ferkous H; Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Sep; 26():30-39. PubMed ID: 25753313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.
    Authier O; Ouhabaz H; Bedogni S
    Ultrason Sonochem; 2018 Jul; 45():17-28. PubMed ID: 29705309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations for sonochemistry.
    Yasui K
    Ultrason Sonochem; 2021 Oct; 78():105728. PubMed ID: 34438317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On efficient modelling of radical production in cavitation assisted reactors.
    Ozan SC; Muller PJ; Cloete JH
    Ultrason Sonochem; 2024 Mar; 104():106833. PubMed ID: 38452712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New interpretation of the effects of argon-saturating gas toward sonochemical reactions.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Mar; 23():37-45. PubMed ID: 25304684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning.
    Minsier V; Proost J
    Ultrason Sonochem; 2008 Apr; 15(4):598-604. PubMed ID: 17662636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.