These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32062557)

  • 1. Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF.
    Li Q; Hu X; Hao J; Chen W; Cai P; Huang Q
    Chemosphere; 2020 Jun; 249():126143. PubMed ID: 32062557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging shapes the distribution of copper in soil aggregate size fractions.
    Li Q; Du H; Chen W; Hao J; Huang Q; Cai P; Feng X
    Environ Pollut; 2018 Feb; 233():569-576. PubMed ID: 29102887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and mobility of exogenous copper as influenced by aging and components interactions in three Chinese soils.
    Shi H; Li Q; Chen W; Cai P; Huang Q
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10771-10781. PubMed ID: 29396824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using new hetero-spectral two-dimensional correlation analyses and synchrotron-radiation-based spectromicroscopy to characterize binding of Cu to soil dissolved organic matter.
    Sun F; Li Y; Wang X; Chi Z; Yu G
    Environ Pollut; 2017 Apr; 223():457-465. PubMed ID: 28118997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.
    Chen C; Dynes JJ; Wang J; Karunakaran C; Sparks DL
    Environ Sci Technol; 2014 Jun; 48(12):6678-86. PubMed ID: 24837340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated temperature induces contrasting transformation of exogenous copper to soil solution and solid phases in an arable soil.
    Hu X; Qu C; Han Y; Sun P; Cai P; Chen W; Huang Q
    Ecotoxicol Environ Saf; 2023 Apr; 255():114744. PubMed ID: 36931086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.
    Yang J; Liu J; Dynes JJ; Peak D; Regier T; Wang J; Zhu S; Shi J; Tse JS
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2943-54. PubMed ID: 24170498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microprobe and synchrotron x-ray fluorescence mapping of the heterogeneous distribution of copper in high-copper vineyard soils.
    Jacobson AR; Dousset S; Andreux F; Baveye PC
    Environ Sci Technol; 2007 Sep; 41(18):6343-9. PubMed ID: 17948777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China.
    Chang CY; Xu XH; Liu CP; Li SY; Liao XR; Dong J; Li FB
    Environ Sci Process Impacts; 2014 Jul; 16(7):1790-8. PubMed ID: 24855639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation of Cu in a contaminated agricultural soil measured by XAFS, micro-XAFS, and micro-XRF.
    Strawn DG; Baker LL
    Environ Sci Technol; 2008 Jan; 42(1):37-42. PubMed ID: 18350872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.
    Cui H; Ma K; Fan Y; Peng X; Mao J; Zhou D; Zhang Z; Zhou J
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10808-10817. PubMed ID: 26893180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).
    Yutong Z; Qing X; Shenggao L
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14600-7. PubMed ID: 27068918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].
    Shi QB; Zhao XL; Chang TJ; Lu JW
    Huan Jing Ke Xue; 2016 May; 37(5):1923-30. PubMed ID: 27506049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enrichment Characteristics of Heavy Metals in Particulate Organic Matter of Purple Paddy Soil].
    Li QY; Zhao XL
    Huan Jing Ke Xue; 2017 May; 38(5):2146-2153. PubMed ID: 29965123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and desorption of Cu
    Dai J; Wang W; Wu W; Gao J; Dong C
    J Environ Sci (China); 2017 May; 55():311-320. PubMed ID: 28477826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations.
    Mamindy-Pajany Y; Sayen S; Mosselmans JF; Guillon E
    Environ Sci Technol; 2014 Jul; 48(13):7237-44. PubMed ID: 24899255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction between particulate organic matter and copper, zinc in paddy soil.
    Shi J; Wu Q; Zheng C; Yang J
    Environ Pollut; 2018 Dec; 243(Pt B):1394-1402. PubMed ID: 30273866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption behaviors of fungicide-derived copper onto various size fractions of aggregates from orchard soil.
    Wang QY; Hu B; Yu HW
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24983-24990. PubMed ID: 27677988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes.
    Babcsányi I; Chabaux F; Granet M; Meite F; Payraudeau S; Duplay J; Imfeld G
    Sci Total Environ; 2016 Jul; 557-558():154-62. PubMed ID: 26994803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils.
    Yu X; Lu S
    Environ Pollut; 2016 Dec; 219():19-27. PubMed ID: 27661724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.