These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 32062585)

  • 1. In-situ MRI velocimetry of the magnetohydrodynamic effect in electrochemical cells.
    Benders S; Gomes BF; Carmo M; Colnago LA; Blümich B
    J Magn Reson; 2020 Mar; 312():106692. PubMed ID: 32062585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy.
    Ferreira Gomes B; Ferreira da Silva P; Silva Lobo CM; da Silva Santos M; Colnago LA
    Anal Chim Acta; 2017 Aug; 983():91-95. PubMed ID: 28811033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced detection of quantum dots by the magnetohydrodynamic effect for electrochemical biosensing.
    Martín-Yerga D; Fanjul-Bolado P; Hernández-Santos D; Costa-García A
    Analyst; 2017 May; 142(9):1591-1600. PubMed ID: 28387776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ study of the magnetoelectrolysis phenomenon during copper electrodeposition using time domain NMR relaxometry.
    Gomes BF; Nunes LM; Lobo CM; Cabeça LF; Colnago LA
    Anal Chem; 2014 Oct; 86(19):9391-3. PubMed ID: 25162751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of redox magnetohydrodynamic fluid flow at microelectrode arrays using microbeads.
    Anderson EC; Weston MC; Fritsch I
    Anal Chem; 2010 Apr; 82(7):2643-51. PubMed ID: 20210341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic field effects on electrochemical metal depositions.
    Bund A; Ispas A; Mutschke G
    Sci Technol Adv Mater; 2008 Apr; 9(2):024208. PubMed ID: 27877959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ analysis of copper electrodeposition reaction using unilateral NMR sensor.
    Gomes BF; Nunes LM; Lobo CM; Carvalho AS; Cabeça LF; Colnago LA
    J Magn Reson; 2015 Dec; 261():83-6. PubMed ID: 26540649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetohydrodynamic flow imaging of ionic solutions using electrical current injection and MR phase measurements.
    Eroğlu HH; Sadighi M; Eyüboğlu BM
    J Magn Reson; 2019 Jun; 303():128-137. PubMed ID: 31063921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite Graphite-Epoxy Electrodes for In Situ Electrochemistry Coupling with High Resolution NMR.
    Ferreira da Silva P; Ferreira Gomes B; Silva Lobo CM; Carmo M; Roth C; Colnago LA
    ACS Omega; 2022 Feb; 7(6):4991-5000. PubMed ID: 35187316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high current density DC magnetohydrodynamic (MHD) micropump.
    Homsy A; Koster S; Eijkel JC; van den Berg A; Lucklum F; Verpoorte E; de Rooij NF
    Lab Chip; 2005 Apr; 5(4):466-71. PubMed ID: 15791346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field-controlled microfluidic transport.
    Grant KM; Hemmert JW; White HS
    J Am Chem Soc; 2002 Jan; 124(3):462-7. PubMed ID: 11792217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ and operando magnetic resonance imaging of electrochemical cells: A perspective.
    Mohammadi M; Jerschow A
    J Magn Reson; 2019 Nov; 308():106600. PubMed ID: 31679639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetohydrodynamic motion of a colloidal sphere with self-electrochemical surface reactions in a spherical cavity.
    Hsieh TH; Keh HJ
    J Chem Phys; 2013 Feb; 138(7):074105. PubMed ID: 23444995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection.
    Panta YM; Liu J; Cheney MA; Joo SW; Qian S
    J Colloid Interface Sci; 2009 May; 333(2):485-90. PubMed ID: 19296964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical velocimetry on centrifugal microfluidic platforms.
    Abi-Samra K; Kim TH; Park DK; Kim N; Kim J; Kim H; Cho YK; Madou M
    Lab Chip; 2013 Aug; 13(16):3253-60. PubMed ID: 23787459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic-Field-Induced Electrochemical Performance of a Porous Magnetoplasmonic Ag@Fe
    Tufa LT; Jeong KJ; Tran VT; Lee J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6598-6606. PubMed ID: 31922383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetohydrodynamic Voltage Recorder for Comparing Peripheral Blood Flow.
    Wu KJ; Gregory TS; Lastinger MC; Murrow JR; Tse ZTH
    Ann Biomed Eng; 2017 Oct; 45(10):2298-2308. PubMed ID: 28643129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.