These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32062633)

  • 1. Adsorption/Combustion-type Micro Gas Sensors: Typical VOC-sensing Properties and Material-design Approach for Highly Sensitive and Selective VOC Detection.
    Hyodo T; Shimizu Y
    Anal Sci; 2020 Apr; 36(4):401-411. PubMed ID: 32062633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Step Modulation of the Pulse-Driven Mode for a High-Performance SnO
    Suematsu K; Hiroyama Y; Harano W; Mizukami W; Watanabe K; Shimanoe K
    ACS Sens; 2020 Nov; 5(11):3449-3456. PubMed ID: 32962335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Micro- and Nano-Gas Sensor Technology: A Review.
    Nazemi H; Joseph A; Park J; Emadi A
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Functionalization of Layered Molybdenum Disulfide for the Selective Detection of Volatile Organic Compounds at Room Temperature.
    Chen WY; Yen CC; Xue S; Wang H; Stanciu LA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34135-34143. PubMed ID: 31453680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Machine Learning to Overcome Interfering Oxygen Effects in a Graphene Volatile Organic Compound Sensor.
    Capman NSS; Chaganti VRSK; Simms LE; Hogan CJ; Koester SJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7554-7564. PubMed ID: 38295439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Sensitivity in Photovoltaic 2D MoS
    Mohammadzadeh MR; Hasani A; Hussain T; Ghanbari H; Fawzy M; Abnavi A; Ahmadi R; Kabir F; De Silva T; Rajapakse RKND; Adachi MM
    Small; 2024 Jul; ():e2402464. PubMed ID: 39058241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization.
    Postica V; Vahl A; Santos-Carballal D; Dankwort T; Kienle L; Hoppe M; Cadi-Essadek A; de Leeuw NH; Terasa MI; Adelung R; Faupel F; Lupan O
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31452-31466. PubMed ID: 31333012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of volatile-organic-compounds (VOCs) in solution using cantilever-based gas sensors.
    Bao Y; Xu P; Cai S; Yu H; Li X
    Talanta; 2018 May; 182():148-155. PubMed ID: 29501134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles insights into the C
    Zhang R; Wang Z; Hou Q; Yuan X; Yong Y; Cui H; Li X
    RSC Adv; 2023 Sep; 13(41):28703-28712. PubMed ID: 37790102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse-Driven Semiconductor Gas Sensors Toward ppt Level Toluene Detection.
    Suematsu K; Harano W; Oyama T; Shin Y; Watanabe K; Shimanoe K
    Anal Chem; 2018 Oct; 90(19):11219-11223. PubMed ID: 30130092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional metal-organic frameworks as effective sensors of gases and volatile compounds.
    Li HY; Zhao SN; Zang SQ; Li J
    Chem Soc Rev; 2020 Sep; 49(17):6364-6401. PubMed ID: 32749390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact Ionization Induced by Accelerated Photoelectrons for Wide-Range and Highly Sensitive Detection of Volatile Organic Compounds at Room Temperature.
    Kang Y; Pyo S; Jeong HI; Lee K; Baek DH; Kim J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20491-20499. PubMed ID: 31066269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in energy-saving chemiresistive gas sensors: A review.
    Majhi SM; Mirzaei A; Kim HW; Kim SS; Kim TW
    Nano Energy; 2021 Jan; 79():105369. PubMed ID: 32959010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique Photoactivated Time-Resolved Response in 2D GeS for Selective Detection of Volatile Organic Compounds.
    Mohammadzadeh MR; Hasani A; Jaferzadeh K; Fawzy M; De Silva T; Abnavi A; Ahmadi R; Ghanbari H; Askar A; Kabir F; Rajapakse RKND; Adachi MM
    Adv Sci (Weinh); 2023 Apr; 10(10):e2205458. PubMed ID: 36658730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporally resolved thermal desorption of volatile organics from nanoporous silica preconcentrator.
    Winter W; Day C; Prestage J; Hutter T
    Analyst; 2021 Jan; 146(1):109-117. PubMed ID: 33163998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Volatile Organic Compound Adsorption on the Characteristics of Organic Field-Effect Transistors and Rules for Gas-Sensing Measurements.
    Qin L; Liu W; Su J; Yang Z; Liang Z; Li X; Luan P; Wang DK; Lu ZH; Zhu Q
    Langmuir; 2023 Nov; 39(44):15756-15765. PubMed ID: 37883782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic Ti
    Kim SJ; Koh HJ; Ren CE; Kwon O; Maleski K; Cho SY; Anasori B; Kim CK; Choi YK; Kim J; Gogotsi Y; Jung HT
    ACS Nano; 2018 Feb; 12(2):986-993. PubMed ID: 29368519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZIF-8-Based Surface Plasmon Resonance and Fabry-Pérot Sensors for Volatile Organic Compounds.
    Estany-Macià A; Fort-Grandas I; Joshi N; Svendsen WE; Dimaki M; Romano-Rodríguez A; Moreno-Sereno M
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the substrate effect on VOC emissions from water based varnish and latex paint.
    Silva GV; Vasconcelos MT; Santos AM; Fernandes EO
    Environ Sci Pollut Res Int; 2003; 10(4):209-16. PubMed ID: 12943003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive and selective Sb
    Zhang C; Zheng Z; Liu K; Debliquy M; Liu Q
    Food Chem; 2023 Oct; 424():136323. PubMed ID: 37210843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.