These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32063289)

  • 1. TRIPS 2.0: Toward more comprehensive modeling of radiocaesium cycling in forest.
    Thiry Y; Tanaka T; Dvornik AA; Dvornik AM
    J Environ Radioact; 2020 Apr; 214-215():106171. PubMed ID: 32063289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and assessment of a simple ecological model (TRIPS) for forests contaminated by radiocesium fallout.
    Thiry Y; Albrecht A; Tanaka T
    J Environ Radioact; 2018 Oct; 190-191():149-159. PubMed ID: 29793757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.
    Goor F; Thiry Y
    Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiocaesium accumulation in stemwood: integrated approach at the scale of forest stands for contaminated Scots pine in Belarus.
    Goor F; Thiry Y; Delvaux B
    J Environ Manage; 2007 Oct; 85(1):129-36. PubMed ID: 17029757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiocaesium partitioning in Japanese cedar forests following the "early" phase of Fukushima fallout redistribution.
    Coppin F; Hurtevent P; Loffredo N; Simonucci C; Julien A; Gonze MA; Nanba K; Onda Y; Thiry Y
    Sci Rep; 2016 Nov; 6():37618. PubMed ID: 27876870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How dynamic transfer models can complement an equilibrium-based approach: Case studies of radiocesium transfer to forest trees following accidental atmospheric release.
    Tanaka T; Thiry Y
    Sci Total Environ; 2023 Aug; 884():163715. PubMed ID: 37137358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer parameter values in temperate forest ecosystems: a review.
    Calmon P; Thiry Y; Zibold G; Rantavaara A; Fesenko S
    J Environ Radioact; 2009 Sep; 100(9):757-66. PubMed ID: 19100665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological pathways of radionuclides originating from the Chernobyl fallout in a boreal forest ecosystem.
    Guillitte O; Melin J; Wallberg L
    Sci Total Environ; 1994 Dec; 157(1-3):207-15. PubMed ID: 7839113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents.
    Calmon P; Gonze MA; Mourlon Ch
    Sci Total Environ; 2015 Oct; 529():30-9. PubMed ID: 26005747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The (137)Cs accumulation by forest-derived products in the Gomel region.
    Bulko NI; Shabaleva MA; Kozlov AK; Tolkacheva NV; Mashkov IA
    J Environ Radioact; 2014 Jan; 127():150-4. PubMed ID: 23453660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis of radiocesium contamination data in Japanese forest trees over the period 2011-2013.
    Gonze MA; Calmon P
    Sci Total Environ; 2017 Dec; 601-602():301-316. PubMed ID: 28570967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Distribution of ¹³⁷Cs in Soil of Spruce Forest in the Distant Zone of Chernobyl Fallout.
    Lipatov DN; Shcheglov AI; Manakhov DV; Tsvetnova OB
    Radiats Biol Radioecol; 2017 Jan; 57(1):86-97. PubMed ID: 30698936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review.
    Evrard O; Laceby JP; Lepage H; Onda Y; Cerdan O; Ayrault S
    J Environ Radioact; 2015 Oct; 148():92-110. PubMed ID: 26142817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiocesium distribution and fluxes in the typical Cryptomeria japonica forest at the late stage after the accident at Fukushima Dai-Ichi Nuclear Power Plant.
    Yoschenko V; Takase T; Konoplev A; Nanba K; Onda Y; Kivva S; Zheleznyak M; Sato N; Keitoku K
    J Environ Radioact; 2017 Jan; 166(Pt 1):45-55. PubMed ID: 26948679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Scots pine (Pinus sylvestris L.) plantings on long term (137)Cs and (90)Sr recycling from a waste burial site in the Chernobyl Red Forest.
    Thiry Y; Colle C; Yoschenko V; Levchuk S; Van Hees M; Hurtevent P; Kashparov V
    J Environ Radioact; 2009 Dec; 100(12):1062-8. PubMed ID: 19525043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots.
    Yoshimura K; Onda Y; Kato H
    J Environ Radioact; 2015 Jan; 139():362-369. PubMed ID: 25113169
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Tsvetnova O; Shcheglov A; Klyashtorin A
    J Environ Radioact; 2018 Dec; 195():79-89. PubMed ID: 30296689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical migration of plutonium-239 + -240, americium-241 and caesium-137 fallout in a forest soil under spruce.
    Bunzl K; Kracke W; Schimmack W
    Analyst; 1992 Mar; 117(3):469-74. PubMed ID: 1580383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental quantification of radiocesium recycling in a coniferous tree after aerial contamination: Field loss dynamics, translocation and final partitioning.
    Thiry Y; Garcia-Sanchez L; Hurtevent P
    J Environ Radioact; 2016 Sep; 161():42-50. PubMed ID: 26774824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents.
    Schell WR; Linkov I; Myttenaere C; Morel B
    Health Phys; 1996 Mar; 70(3):318-35. PubMed ID: 8609024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.