These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32063333)

  • 1. Specifying the flux and dose-equivalent buildup factors for infinite slabs irradiated by radionuclide neutron sources.
    Khabaz R
    Appl Radiat Isot; 2020 Mar; 157():109040. PubMed ID: 32063333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total Ambient Dose Equivalent Buildup Factors for Portland Concrete.
    Duckic P; Hayes RB
    Health Phys; 2018 Sep; 115(3):324-337. PubMed ID: 30045112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.
    Duckic P; Hayes RB
    Health Phys; 2018 Jun; 114(6):569-581. PubMed ID: 29543602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the exposure buildup factors for X-ray photons with continuous energy spectrum by Monte Carlo code.
    Mohammad Rafiei M; Tavakoli-Anbaran H
    J Radiol Prot; 2017 Nov; ():. PubMed ID: 29176056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SHORTCUT FORMULA FOR THE 230-MeV PROTON-INDUCED NEUTRON DOSE EQUIVALENT IN CONCRETE AFTER A METAL SHIELD, DERIVED FROM MONTE CARLO SIMULATIONS WITH MCNPX.
    Taal A; van der Kooij A; Okx WJ
    Radiat Prot Dosimetry; 2016 Nov; 171(3):326-336. PubMed ID: 26374914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma ray buildup factors for conventional shielding materials and buildup factors computed for tungsten with a thickness beyond 40 mean free paths.
    Basu P; Sarangapani R; Venkatraman B
    Appl Radiat Isot; 2019 Dec; 154():108864. PubMed ID: 31442795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the exposure buildup factors for x-ray photons with continuous energy spectrum using Monte Carlo code.
    Rafiei MM; Tavakoli-Anbaran H
    J Radiol Prot; 2018 Jan; 38(1):207-217. PubMed ID: 29345247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite and infinite system gamma ray buildup factor calculations with detailed physics.
    Atak H; Çelikten OŞ; Tombakoğlu M
    Appl Radiat Isot; 2015 Nov; 105():11-14. PubMed ID: 26218451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concrete enclosure for shielding a neutron source.
    Vega-Carrillo HR; Villagrana-Muñoz LE; Rivera-Perez E; de Leon-Martinez HA; Soto-Bernal TG; Hernández-Davila VM
    Appl Radiat Isot; 2013 Sep; 79():37-41. PubMed ID: 23722073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the Personnel Safety of a Landmine Detection System using Proper Shielding Materials.
    Miri-Hakimabad H; Vejdani-Noghreiyan A
    J Med Imaging Radiat Sci; 2009 Sep; 40(3):105-108. PubMed ID: 31051841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact shielding and irradiator design of a
    Nasrabadi M; Ebrahimibasabi E; Tavakoli-Anbaran H
    Appl Radiat Isot; 2019 Jan; 143():29-34. PubMed ID: 30368050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of gamma ray and neutron attenuation capability of thermoplastic polymers.
    More CV; Alavian H; Pawar PP
    Appl Radiat Isot; 2021 Oct; 176():109884. PubMed ID: 34358917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams.
    Gudowska I; Kopec M; Sobolevsky N
    Radiat Prot Dosimetry; 2007; 126(1-4):652-6. PubMed ID: 17504751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IMPROVEMENTS IN THE THERMAL NEUTRON CALIBRATION UNIT, TNF2, AT LNMRI/IRD.
    Astuto A; Fernandes SS; Patrão KCS; Fonseca ES; Pereira WW; Lopes RT
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):56-61. PubMed ID: 29474641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated neutron dose rates and flux densities from implantable californium-252 point and line sources.
    Shapiro A; Schwartz B; Windham JP; Kereiakes JG
    Med Phys; 1976; 3(4):241-7. PubMed ID: 958169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the safety of a body composition analyser based on the PGNAA method.
    Miri-Hakimabad H; Izadi-Najafabadi R; Vejdani-Noghreiyan A; Panjeh H
    J Radiol Prot; 2007 Dec; 27(4):457-64. PubMed ID: 18268376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.