These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32064317)

  • 1. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.
    Wakabayashi T; Hamana M; Mori A; Akiyama R; Ueno K; Osakabe K; Osakabe Y; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Sci Adv; 2019 Dec; 5(12):eaax9067. PubMed ID: 32064317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol.
    Wakabayashi T; Shida K; Kitano Y; Takikawa H; Mizutani M; Sugimoto Y
    Planta; 2020 Apr; 251(5):97. PubMed ID: 32306106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone.
    Zhang Y; Cheng X; Wang Y; Díez-Simón C; Flokova K; Bimbo A; Bouwmeester HJ; Ruyter-Spira C
    New Phytol; 2018 Jul; 219(1):297-309. PubMed ID: 29655242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis.
    Homma M; Wakabayashi T; Moriwaki Y; Shiotani N; Shigeta T; Isobe K; Okazawa A; Ohta D; Terada T; Shimizu K; Mizutani M; Takikawa H; Sugimoto Y
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2313683121. PubMed ID: 38905237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol.
    Wang Y; Durairaj J; Suárez Duran HG; van Velzen R; Flokova K; Liao CY; Chojnacka A; MacFarlane S; Schranz ME; Medema MH; van Dijk ADJ; Dong L; Bouwmeester HJ
    New Phytol; 2022 Sep; 235(5):1884-1899. PubMed ID: 35612785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure Elucidation and Biosynthesis of Orobanchol.
    Wakabayashi T; Ueno K; Sugimoto Y
    Front Plant Sci; 2022; 13():835160. PubMed ID: 35222492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis.
    Yoneyama K; Mori N; Sato T; Yoda A; Xie X; Okamoto M; Iwanaga M; Ohnishi T; Nishiwaki H; Asami T; Yokota T; Akiyama K; Yoneyama K; Nomura T
    New Phytol; 2018 Jun; 218(4):1522-1533. PubMed ID: 29479714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel canonical strigolactones produced by tomato.
    Wakabayashi T; Moriyama D; Miyamoto A; Okamura H; Shiotani N; Shimizu N; Mizutani M; Takikawa H; Sugimoto Y
    Front Plant Sci; 2022; 13():1064378. PubMed ID: 36589093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp.
    Dor E; Yoneyama K; Wininger S; Kapulnik Y; Yoneyama K; Koltai H; Xie X; Hershenhorn J
    Phytopathology; 2011 Feb; 101(2):213-22. PubMed ID: 20942651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the rice
    Chen GE; Wang JY; Votta C; Braguy J; Jamil M; Kirschner GK; Fiorilli V; Berqdar L; Balakrishna A; Blilou I; Lanfranco L; Al-Babili S
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2306263120. PubMed ID: 37819983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis.
    Kohlen W; Charnikhova T; Lammers M; Pollina T; Tóth P; Haider I; Pozo MJ; de Maagd RA; Ruyter-Spira C; Bouwmeester HJ; López-Ráez JA
    New Phytol; 2012 Oct; 196(2):535-547. PubMed ID: 22924438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca.
    Bari VK; Nassar JA; Kheredin SM; Gal-On A; Ron M; Britt A; Steele D; Yoder J; Aly R
    Sci Rep; 2019 Aug; 9(1):11438. PubMed ID: 31391538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.
    Abe S; Sado A; Tanaka K; Kisugi T; Asami K; Ota S; Kim HI; Yoneyama K; Xie X; Ohnishi T; Seto Y; Yamaguchi S; Akiyama K; Yoneyama K; Nomura T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18084-9. PubMed ID: 25425668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.
    López-Ráez JA; Charnikhova T; Gómez-Roldán V; Matusova R; Kohlen W; De Vos R; Verstappen F; Puech-Pages V; Bécard G; Mulder P; Bouwmeester H
    New Phytol; 2008; 178(4):863-874. PubMed ID: 18346111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis.
    Wakabayashi T; Ishiwa S; Shida K; Motonami N; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Plant Physiol; 2021 Apr; 185(3):902-913. PubMed ID: 33793911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomato strigolactones: a more detailed look.
    Kohlen W; Charnikhova T; Bours R; López-Ráez JA; Bouwmeester H
    Plant Signal Behav; 2013 Jan; 8(1):e22785. PubMed ID: 23221743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions.
    Koltai H; LekKala SP; Bhattacharya C; Mayzlish-Gati E; Resnick N; Wininger S; Dor E; Yoneyama K; Yoneyama K; Hershenhorn J; Joel DM; Kapulnik Y
    J Exp Bot; 2010 Jun; 61(6):1739-49. PubMed ID: 20194924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of biosynthesis, perception, and functions of strigolactones for promoting arbuscular mycorrhizal symbiosis and managing root parasitic weeds.
    Yoneyama K; Xie X; Yoneyama K; Nomura T; Takahashi I; Asami T; Mori N; Akiyama K; Kusajima M; Nakashita H
    Pest Manag Sci; 2019 Sep; 75(9):2353-2359. PubMed ID: 30843315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.