These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32064467)

  • 1. Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.
    McAdams I; Kenyon H; Bourbeau D; Damaser MS; Zorman C; Majerus SJA
    IEEE Biomed Circuits Syst Conf; 2018 Oct; 2018():. PubMed ID: 32064467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
    Majerus SJ; Garverick SL; Suster MA; Fletter PC; Damaser MS
    ACM J Emerg Technol Comput Syst; 2012 Jun; 8(2):. PubMed ID: 26778926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless Implantable Pressure Monitor for Conditional Bladder Neuromodulation.
    Majerus S; Makovey I; Zhui H; Ko W; Damaser MS
    IEEE Biomed Circuits Syst Conf; 2015 Oct; 2015():. PubMed ID: 34254059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Bladder Pressure Monitor for Closed-Loop Bladder Neuromodulation.
    Majerus S; Basu AS; Makovey I; Wang P; Zhui H; Zorman C; Ko W; Damaser MS
    Proc IEEE Sens; 2016; 2016():. PubMed ID: 34012497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.
    Majerus SJ; Fletter PC; Damaser MS; Garverick SL
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):763-7. PubMed ID: 20934942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy scavenging for long-term deployable wireless sensor networks.
    MathĂșna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B
    Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Optoelectronic System for Wireless, Programmable Neuromodulation During Free Behavior.
    Orguc S; Sands J; Sahasrabudhe A; Anikeeva P; Chandrakasan AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4322-4325. PubMed ID: 33018952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multifunctional Battery-Free Bluetooth Low Energy Wireless Sensor Node Remotely Powered by Electromagnetic Wireless Power Transfer in Far-Field.
    Sidibe A; Loubet G; Takacs A; Dragomirescu D
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Implantable Wireless and Batteryless Bladder Pressure Monitor System for Lower Urinary Tract Dysfunction.
    Zhong Y; Qian B; Zhu Y; Ren Z; Deng J; Liu J; Bai Q; Zhang X
    IEEE J Transl Eng Health Med; 2020; 8():2500107. PubMed ID: 32461841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless and Catheter-Free Bladder Pressure and Volume Sensor.
    Majerus SJA; Hanzlicek B; Hacohen Y; Cabal D; Bourbeau D; Damaser MS
    IEEE Sens J; 2024 Mar; 24(6):7308-7316. PubMed ID: 38500510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeing the Animal Model: A Modular, Wirelessly Powered, Implantable Electronic Platform.
    Greene JJ; Gorelik P; Mazor O; Guarin DL; Malk R; Hadlock T
    Plast Reconstr Surg; 2024 Mar; 153(3):568e-572e. PubMed ID: 37184506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring.
    Panayanthatta N; Clementi G; Ouhabaz M; Costanza M; Margueron S; Bartasyte A; Basrour S; Bano E; Montes L; Dehollain C; La Rosa R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
    Borton DA; Yin M; Aceros J; Nurmikko A
    J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
    Lee D
    Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.
    Pizzotti M; Perilli L; Del Prete M; Fabbri D; Canegallo R; Dini M; Masotti D; Costanzo A; Franchi Scarselli E; Romani A
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28788084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Balance of Wireless Sensor Nodes Based on Bluetooth Low Energy and Thermoelectric Energy Harvesting.
    Liu Y; Riba JR; Moreno-Eguilaz M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different Scenarios of Autonomous Operation of an Environmental Sensor Node Using a Piezoelectric-Vibration-Based Energy Harvester.
    Bouhedma S; Bin Taufik J; Lange F; Ouali M; Seitz H; Hohlfeld D
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantable wireless battery recharging system for bladder pressure chronic monitoring.
    Young DJ; Cong P; Suster MA; Damaser M
    Lab Chip; 2015 Nov; 15(22):4338-47. PubMed ID: 26419677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.