BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 32064562)

  • 1. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography.
    Zhang X; Cao YZ; Mu XH; Sun Y; Schmidt M; Forman C; Speier P; Lu SS; Hong XN
    Eur Radiol; 2020 Jun; 30(6):3059-3065. PubMed ID: 32064562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses.
    Dagirmanjian A; Ross JS; Obuchowski N; Lewin JS; Tkach JA; Ruggieri PM; Masaryk TJ
    J Comput Assist Tomogr; 1995; 19(5):700-6. PubMed ID: 7560313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The current role of 1.5T non-contrast 3D time-of-flight magnetic resonance angiography to detect intracranial steno-occlusive disease.
    Sadikin C; Teng MM; Chen TY; Luo CB; Chang FC; Lirng JF; Sun YC
    J Formos Med Assoc; 2007 Sep; 106(9):691-9. PubMed ID: 17908658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA.
    Zhang J; Ding S; Zhao H; Sun B; Li X; Zhou Y; Wan J; Degnan AJ; Xu J; Zhu C
    Eur Radiol; 2020 Nov; 30(11):5805-5814. PubMed ID: 32529567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical utility of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography for infrageniculate arterial occlusive disease.
    Mell M; Tefera G; Thornton F; Siepman D; Turnipseed W
    J Vasc Surg; 2007 Mar; 45(3):543-8; discussion 548. PubMed ID: 17223303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supraaortic arteries: contrast-enhanced MR angiography at 3.0 T--highly accelerated parallel acquisition for improved spatial resolution over an extended field of view.
    Nael K; Villablanca JP; Pope WB; McNamara TO; Laub G; Finn JP
    Radiology; 2007 Feb; 242(2):600-9. PubMed ID: 17255428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Evaluation of Highly Accelerated Compressed Sensing Time-of-Flight MR Angiography for Intracranial Arterial Stenosis.
    Lu SS; Qi M; Zhang X; Mu XH; Schmidt M; Sun Y; Forman C; Speier P; Hong XN
    AJNR Am J Neuroradiol; 2018 Oct; 39(10):1833-1838. PubMed ID: 30213812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECG-triggered non-enhanced MR angiography of peripheral arteries in comparison to DSA in patients with peripheral artery occlusive disease.
    Partovi S; Rasmus M; Schulte AC; Rengier F; Jacob AL; Aschwanden M; Karmonik C; Bongartz G; Bilecen D
    MAGMA; 2013 Jun; 26(3):271-80. PubMed ID: 23117342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3T.
    Choi CG; Lee DH; Lee JH; Pyun HW; Kang DW; Kwon SU; Kim JK; Kim SJ; Suh DC
    AJNR Am J Neuroradiol; 2007 Mar; 28(3):439-46. PubMed ID: 17353309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization.
    Ren S; Wu W; Su C; Zhu Q; Schmidt M; Sun Y; Forman C; Speier P; Hong X; Lu S
    BMC Med Imaging; 2022 Apr; 22(1):64. PubMed ID: 35387607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA.
    Gong Y; Cao C; Guo Y; Chang B; Sheng Z; Shen W; Zou Y; Lu X; Xing J; Xia S
    Eur Radiol; 2021 Aug; 31(8):5479-5489. PubMed ID: 33585995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography: a prospective, intra-individual comparative analysis with digital subtraction angiography.
    Willinek WA; von Falkenhausen M; Born M; Gieseke J; Höller T; Klockgether T; Textor HJ; Schild HH; Urbach H
    Stroke; 2005 Jan; 36(1):38-43. PubMed ID: 15569881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA.
    Zhao DL; Li RY; Li C; Chen XH; Yu JW; Zhang Y; Ju S
    Clin Radiol; 2023 Feb; 78(2):e63-e70. PubMed ID: 36307233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone subtraction CTA for transcranial arteries: intra-individual comparison with standard CTA without bone subtraction and TOF-MRA.
    Buerke B; Puesken M; Wittkamp G; Stehling C; Ditt H; Seidensticker P; Wessling J; Heindel W; Kloska SP
    Clin Radiol; 2010 Jun; 65(6):440-6. PubMed ID: 20451010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of PETRA-MRA to assess intracranial arterial stenosis: Comparison with TOF-MRA, CTA, and DSA.
    Niu J; Ran Y; Chen R; Zhang F; Lei X; Wang X; Li T; Zhu J; Zhang Y; Cheng J; Zhang Y; Zhu C
    Front Neurol; 2022; 13():1068132. PubMed ID: 36726752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography.
    Sakata A; Fushimi Y; Okada T; Nakajima S; Hinoda T; Speier P; Schmidt M; Forman C; Yoshida K; Kataoka H; Miyamoto S; Nakamoto Y
    Neuroradiology; 2021 Jun; 63(6):879-887. PubMed ID: 33063222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enhanced, ECG-gated MR angiography of the pedal vasculature: comparison with contrast-enhanced MR angiography and digital subtraction angiography in peripheral arterial occlusive disease.
    Schubert T; Takes M; Aschwanden M; Klarhoefer M; Haas T; Jacob AL; Liu D; Gutzeit A; Kos S
    Eur Radiol; 2016 Aug; 26(8):2705-13. PubMed ID: 26515548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of treatment plans for lower extremity arterial occlusive disease made with electrocardiography-triggered two-dimensional time-of-flight magnetic resonance angiography and digital subtraction angiography.
    Hoch JR; Kennell TW; Hollister MS; Sproat IA; Swan JS; Acher CW; Burks J; Heisey DM
    Am J Surg; 1999 Aug; 178(2):166-72. PubMed ID: 10487272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution 3D contrast-enhanced MRA with parallel imaging techniques before endovascular interventional treatment of arterial stenosis.
    Lin J; Li D; Yan F
    Vasc Med; 2009 Nov; 14(4):305-11. PubMed ID: 19808715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.