BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32065048)

  • 1. Evaluation of a sludge-treatment process comprising lipid extraction and drying using liquefied dimethyl ether.
    Wang Q; Oshita K; Nitta T; Takaoka M
    Environ Technol; 2021 Sep; 42(21):3369-3378. PubMed ID: 32065048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether.
    Wang Q; Oshita K; Takaoka M
    Biotechnol Biofuels; 2021 Jan; 14(1):17. PubMed ID: 33422122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of biosolids in dimethyl ether dewatering method.
    Oshita K; Takaoka M; Nakajima Y; Morisawa S; Kanda H; Makino H; Takeda N
    Water Environ Res; 2012 Feb; 84(2):120-7. PubMed ID: 22515061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sludge deep dewatering by liquefied dimethyl ether: selection of operating conditions based on response surface methodology.
    Wang M; Huang Y; Zhang D; He Y
    Environ Technol; 2024 May; ():1-14. PubMed ID: 38748561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of separation and removal of water from dewatered sludge using L-DME to dissolve hydrophilic organic matter.
    Chen L; Zhu W; Lin NX; Mu B; Fan XH; Wang CY; Chen HM; Zhong J
    Chemosphere; 2020 May; 246():125648. PubMed ID: 31891851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of PCBs and water from river sediment using liquefied dimethyl ether as an extractant.
    Oshita K; Takaoka M; Kitade S; Takeda N; Kanda H; Makino H; Matsumoto T; Morisawa S
    Chemosphere; 2010 Feb; 78(9):1148-54. PubMed ID: 20044120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquefied dimethyl ether based multi-stage extraction for high efficient oil recovery from spent bleaching clay.
    Zhang D; Huang Y; Oshita K; Takaoka M; Wang Q; Sheng C; Lin Z
    Waste Manag; 2021 Dec; 136():204-212. PubMed ID: 34700160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient extraction of biodiesel feedstock and dehydration of kitchen waste: A method based on co-dissolution of liquefied dimethyl ether and water.
    Sun J; Zhu W; Mu B; Zhong J; Lin N; Chen S; Li Z
    Waste Manag; 2022 Jun; 147():22-29. PubMed ID: 35597166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of separation and removal of water from oily sludge using liquid dimethyl ether to dissolve hydrocarbons.
    Mu B; Zhu W; Zhong J; Chen L; Lin N; Wang C; Chen S; Li Z
    Chemosphere; 2021 Sep; 279():130452. PubMed ID: 33873064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiesel from dewatered wastewater sludge: a two-step process for a more advantageous production.
    Pastore C; Lopez A; Lotito V; Mascolo G
    Chemosphere; 2013 Jul; 92(6):667-73. PubMed ID: 23642459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether.
    Kanda H; Kamo Y; Machmudah S; Wahyudiono EY; Goto M
    Mar Drugs; 2014 Apr; 12(5):2383-96. PubMed ID: 24796299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sewage sludge drying process integration with a waste-to-energy power plant.
    Bianchini A; Bonfiglioli L; Pellegrini M; Saccani C
    Waste Manag; 2015 Aug; 42():159-65. PubMed ID: 25959614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of water content and cell disruption on lipid extraction using subcritical dimethyl ether in wet microalgae.
    Wang Q; Oshita K; Takaoka M; Shiota K
    Bioresour Technol; 2021 Jun; 329():124892. PubMed ID: 33676356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Extraction of Lutein from Wet Macroalgae by Liquefied Dimethyl Ether without Any Pretreatment.
    Kanda H; Wahyudiono ; Machmudah S; Goto M
    ACS Omega; 2020 Sep; 5(37):24005-24010. PubMed ID: 32984722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid extraction in the primary sludge generated from urban wastewater treatment: characteristics and seasonal composition analysis.
    Villalobos-Delgado FJ; Reynel-Avila HE; Mendoza-Castillo DI; Bonilla-Petriciolet A
    Water Sci Technol; 2023 Jun; 87(11):2930-2943. PubMed ID: 37318933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical compression assisted conductive drying of thin-film dewatered sewage sludge: Process performance, heat and mass transfer behavior.
    Ma D; Li A; Zhang L; Wang D; Ji G
    Waste Manag; 2021 May; 126():41-51. PubMed ID: 33740712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deodorization and dewatering of biosolids by using dimethyl ether.
    Kanda H; Morita M; Makino H; Takegami K; Yoshikoshi A; Oshita K; Takaoka M; Morisawa S; Takeda N
    Water Environ Res; 2011 Jan; 83(1):23-5. PubMed ID: 21291024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.
    Collard M; Teychené B; Lemée L
    J Environ Manage; 2017 Dec; 203(Pt 2):760-767. PubMed ID: 27292580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.
    Wang Z; Chen D; Song X; Zhao L
    Environ Technol; 2012 Dec; 33(22-24):2481-8. PubMed ID: 23437644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel production by in situ transesterification of municipal primary and secondary sludges.
    Mondala A; Liang K; Toghiani H; Hernandez R; French T
    Bioresour Technol; 2009 Feb; 100(3):1203-10. PubMed ID: 18809323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.