BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 32065120)

  • 1. A Rabbit Model of Aqueous-Deficient Dry Eye Disease Induced by Concanavalin A Injection into the Lacrimal Glands: Application to Drug Efficacy Studies.
    Honkanen RA; Huang L; Rigas B
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Rabbit Model of Chronic Dry Eye Disease Induced by Complete Surgical Dacryoadenectomy.
    Honkanen R; Huang W; Huang L; Kaplowitz K; Weissbart S; Rigas B
    Curr Eye Res; 2019 Aug; 44(8):863-872. PubMed ID: 30983427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a Severe Dry Eye Model Using Complete Dacryoadenectomy in Rabbits.
    Honkanen RA; Huang L; Huang W; Rigas B
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 31984964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye.
    Nagelhout TJ; Gamache DA; Roberts L; Brady MT; Yanni JM
    J Ocul Pharmacol Ther; 2005 Apr; 21(2):139-48. PubMed ID: 15857280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Once-Daily Topical Phosphosulindac Is Efficacious in the Treatment of Dry Eye Disease: Studies in Rabbit Models of Its Main Clinical Subtypes.
    Huang W; Huang L; Li W; Saglam MS; Tourmouzis K; Goldstein SM; Master A; Honkanen R; Rigas B
    J Ocul Pharmacol Ther; 2022; 38(1):102-113. PubMed ID: 34964663
    [No Abstract]   [Full Text] [Related]  

  • 6. Phosphosulindac is efficacious in an improved concanavalin A-based rabbit model of chronic dry eye disease.
    Honkanen RA; Huang L; Xie G; Rigas B
    Transl Res; 2018 Aug; 198():58-72. PubMed ID: 29702077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the Robustness of Distinct Clinical Assessments in Identifying Dry Eye Condition of Animal Models.
    Hsieh HH; Chang YA; Chan S; Lin ZQ; Lin CT; Hu FR; Hung KF; Sun YC
    Curr Eye Res; 2024 Jun; 49(6):565-573. PubMed ID: 38299568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denervation of the Lacrimal Gland Leads to Corneal Hypoalgesia in a Novel Rat Model of Aqueous Dry Eye Disease.
    Aicher SA; Hermes SM; Hegarty DM
    Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6981-9. PubMed ID: 26513503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rabbit models of dry eye disease: Current understanding and unmet needs for translational research.
    Singh S; Sharma S; Basu S
    Exp Eye Res; 2021 May; 206():108538. PubMed ID: 33771517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal stem cell therapy in aqueous deficient dry eye disease.
    Møller-Hansen M
    Acta Ophthalmol; 2023 Oct; 101 Suppl 277():3-27. PubMed ID: 37840443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis of Dry Eye Disease Using Principal Component Analysis: A Study in Animal Models of the Disease.
    Honkanen R; Nemesure B; Huang L; Rigas B
    Curr Eye Res; 2021 May; 46(5):622-629. PubMed ID: 33445973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolactin Inducible Protein, but Not Prolactin, Is Present in Human Tears, Is Involved in Tear Film Quality, and Influences Evaporative Dry Eye Disease.
    Jüngert K; Paulsen F; Jacobi C; Horwath-Winter J; Garreis F
    Front Med (Lausanne); 2022; 9():892831. PubMed ID: 35847789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye.
    Zheng W; Ma M; Du E; Zhang Z; Jiang K; Gu Q; Ke B
    Mol Med Rep; 2015 Nov; 12(5):7344-50. PubMed ID: 26459017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tear biomarkers in dry eye disease: Progress in the last decade.
    Kumar NR; Praveen M; Narasimhan R; Khamar P; D'Souza S; Sinha-Roy A; Sethu S; Shetty R; Ghosh A
    Indian J Ophthalmol; 2023 Apr; 71(4):1190-1202. PubMed ID: 37026250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinct cytokines profile in tear film of dry eye disease (DED) patients with HIV infection.
    Agrawal R; Balne PK; Veerappan A; Au VB; Lee B; Loo E; Ghosh A; Tong L; Teoh SC; Connolly J; Tan P
    Cytokine; 2016 Dec; 88():77-84. PubMed ID: 27585367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysregulated Tear Fluid Nociception-Associated Factors, Corneal Dendritic Cell Density, and Vitamin D Levels in Evaporative Dry Eye.
    Khamar P; Nair AP; Shetty R; Vaidya T; Subramani M; Ponnalagu M; Dhamodaran K; D'souza S; Ghosh A; Pahuja N; Deshmukh R; Ahuja P; Sainani K; Nuijts RMMA; Das D; Ghosh A; Sethu S
    Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2532-2542. PubMed ID: 31195410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis.
    Zhu Z; Stevenson D; Schechter JE; Mircheff AK; Atkinson R; Trousdale MD
    Cornea; 2003 Jan; 22(1):25-32. PubMed ID: 12502944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location and pattern of non-invasive keratographic tear film break-up according to dry eye disease subtypes.
    Kim J; Kim JY; Seo KY; Kim TI; Chin HS; Jung JW
    Acta Ophthalmol; 2019 Dec; 97(8):e1089-e1097. PubMed ID: 31062499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptome of rabbit conjunctiva in dry eye disease: Large-scale changes and similarity to the human dry eye.
    Master A; Kontzias A; Huang L; Huang W; Tsioulias A; Zarabi S; Wolek M; Wollocko BM; Honkanen R; Rigas B
    PLoS One; 2021; 16(7):e0254036. PubMed ID: 34324523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Nano-ophthalmology in Treating Dry Eye Disease.
    Natesan S; Boddu SHS; Krishnaswami V; Shahwan M
    Pharm Nanotechnol; 2020; 8(4):258-289. PubMed ID: 32600244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.