These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32065132)

  • 41. LCST transition of PNIPAM-b-PVCL in water: cooperative aggregation of two distinct thermally responsive segments.
    Hou L; Wu P
    Soft Matter; 2014 May; 10(20):3578-86. PubMed ID: 24664149
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of temperature and salt addition on the association behavior of charged amphiphilic diblock copolymers in aqueous solution.
    Bayati S; Zhu K; Trinh LT; Kjøniksen AL; Nyström B
    J Phys Chem B; 2012 Sep; 116(36):11386-95. PubMed ID: 22905802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. "Schizophrenic" hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood.
    Shih YJ; Chang Y; Deratani A; Quemener D
    Biomacromolecules; 2012 Sep; 13(9):2849-58. PubMed ID: 22838402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermoresponsive Core-Shell Nanoparticles: Does Core Size Matter?
    Schroffenegger M; Reimhult E
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers.
    Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL
    Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of a thermoresponsive biohybrid double hydrophilic block copolymer by a cofactor reconstitution approach.
    Wan X; Liu S
    Macromol Rapid Commun; 2010 Dec; 31(23):2070-6. PubMed ID: 21567633
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A microfluidic platform for integrated synthesis and dynamic light scattering measurement of block copolymer micelles.
    Chastek TQ; Iida K; Amis EJ; Fasolka MJ; Beers KL
    Lab Chip; 2008 Jun; 8(6):950-7. PubMed ID: 18497917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models.
    Ormategui N; Zhang S; Loinaz I; Brydson R; Nelson A; Vakurov A
    Bioelectrochemistry; 2012 Oct; 87():211-9. PubMed ID: 22249139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temperature sensitivity and drug encapsulation of star-shaped amphiphilic block copolymer based on dendritic poly(ether-amide).
    Yang Z; Xie J; Zhou W; Shi W
    J Biomed Mater Res A; 2009 Jun; 89(4):988-1000. PubMed ID: 18478549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-channel in situ dynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12.
    Falke S; Dierks K; Blanchet C; Graewert M; Cipriani F; Meijers R; Svergun D; Betzel C
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):361-372. PubMed ID: 29488914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temperature controlled surface hydrophobicity and interaction forces induced by poly (N-isopropylacrylamide).
    Burdukova E; Li H; Ishida N; O'Shea JP; Franks GV
    J Colloid Interface Sci; 2010 Feb; 342(2):586-92. PubMed ID: 19913799
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New strategy for controlled release of drugs. Potential pinpoint targeting with multiresponsive tetraaniline diblock polymer vesicles: site-directed burst release with voltage.
    Wu Y; Liu S; Tao Y; Ma C; Zhang Y; Xu J; Wei Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1470-80. PubMed ID: 24450985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of anionic electrolytes and human serum albumin on the LCST of poly(N-isopropylacrylamide)-based temperature-responsive copolymers.
    Hiruta Y; Nagumo Y; Suzuki Y; Funatsu T; Ishikawa Y; Kanazawa H
    Colloids Surf B Biointerfaces; 2015 Aug; 132():299-304. PubMed ID: 26057248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature-induced aggregation kinetics in aqueous solutions of a temperature-sensitive amphiphilic block copolymer.
    Maleki A; Kjøniksen AL; Zhu K; Nyström B
    J Phys Chem B; 2011 Jul; 115(29):8975-80. PubMed ID: 21699234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.
    Barnett GV; Perhacs JM; Das TK; Kar SR
    Pharm Res; 2018 Feb; 35(3):58. PubMed ID: 29423663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution Measurements in Drug Products.
    Patil SM; Keire DA; Chen K
    AAPS J; 2017 Nov; 19(6):1760-1766. PubMed ID: 28791599
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm.
    Varenne F; Botton J; Merlet C; Hillaireau H; Legrand FX; Barratt G; Vauthier C
    Int J Pharm; 2016 Dec; 515(1-2):245-253. PubMed ID: 27725269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer.
    Mao Z; Ma L; Yan J; Yan M; Gao C; Shen J
    Biomaterials; 2007 Oct; 28(30):4488-500. PubMed ID: 17640726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of organic and inorganic ions on the lower critical solution transition and aggregation of PNIPAM.
    Pérez-Fuentes L; Bastos-González D; Faraudo J; Drummond C
    Soft Matter; 2018 Oct; 14(38):7818-7828. PubMed ID: 30255921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films.
    Sun X; Tyagi P; Agate S; Lucia L; McCord M; Pal L
    Carbohydr Polym; 2019 Mar; 208():495-503. PubMed ID: 30658828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.