These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32065577)

  • 21. Fitness benefits of loss of heterozygosity in
    Lancaster SM; Payen C; Smukowski Heil C; Dunham MJ
    Genome Res; 2019 Oct; 29(10):1685-1692. PubMed ID: 31548357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolutionary and ecological potential of yeast hybrids.
    Stelkens R; Bendixsen DP
    Curr Opin Genet Dev; 2022 Oct; 76():101958. PubMed ID: 35834944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.
    Peris D; Pérez-Torrado R; Hittinger CT; Barrio E; Querol A
    Yeast; 2018 Jan; 35(1):51-69. PubMed ID: 29027262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of the evolutionary history of Saccharomyces cerevisiae x S. kudriavzevii hybrids based on multilocus sequence analysis.
    Peris D; Lopes CA; Arias A; Barrio E
    PLoS One; 2012; 7(9):e45527. PubMed ID: 23049811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.
    Dunn B; Richter C; Kvitek DJ; Pugh T; Sherlock G
    Genome Res; 2012 May; 22(5):908-24. PubMed ID: 22369888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of Genomic Instability in Interspecific Yeast Hybrids With Diverse Ancestries.
    Bendixsen DP; Peris D; Stelkens R
    Front Fungal Biol; 2021; 2():742894. PubMed ID: 37744091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An update on the diversity, ecology and biogeography of the Saccharomyces genus.
    Alsammar H; Delneri D
    FEMS Yeast Res; 2020 May; 20(3):. PubMed ID: 32196094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations.
    González SS; Barrio E; Gafner J; Querol A
    FEMS Yeast Res; 2006 Dec; 6(8):1221-34. PubMed ID: 17156019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve.
    Piotrowski JS; Nagarajan S; Kroll E; Stanbery A; Chiotti KE; Kruckeberg AL; Dunn B; Sherlock G; Rosenzweig F
    BMC Evol Biol; 2012 Apr; 12():46. PubMed ID: 22471618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chimeric protein complexes in hybrid species generate novel phenotypes.
    Piatkowska EM; Naseeb S; Knight D; Delneri D
    PLoS Genet; 2013; 9(10):e1003836. PubMed ID: 24137105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids.
    Pérez-Través L; Querol A; Pérez-Torrado R
    Int J Food Microbiol; 2016 Nov; 237():35-38. PubMed ID: 27543813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MAT heterozygosity and the second sterility barrier in the reproductive isolation of Saccharomyces species.
    Sipiczki M; Antunovics Z; Szabo A
    Curr Genet; 2020 Oct; 66(5):957-969. PubMed ID: 32356035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing.
    González SS; Barrio E; Querol A
    Appl Environ Microbiol; 2008 Apr; 74(8):2314-20. PubMed ID: 18296532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae.
    Antunovics Z; Nguyen HV; Gaillardin C; Sipiczki M
    FEMS Yeast Res; 2005 Dec; 5(12):1141-50. PubMed ID: 15982931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast.
    Smukowski Heil CS; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    Mol Biol Evol; 2017 Jul; 34(7):1596-1612. PubMed ID: 28369610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postzygotic reproductive isolation among three Saccharomyces yeast species.
    Toyomura K; Hisatomi T
    Yeast; 2021 May; 38(5):326-335. PubMed ID: 33444464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.
    Krogerus K; Seppänen-Laakso T; Castillo S; Gibson B
    Microb Cell Fact; 2017 Apr; 16(1):66. PubMed ID: 28431563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.
    Baker E; Wang B; Bellora N; Peris D; Hulfachor AB; Koshalek JA; Adams M; Libkind D; Hittinger CT
    Mol Biol Evol; 2015 Nov; 32(11):2818-31. PubMed ID: 26269586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transposable Element Mobilization in Interspecific Yeast Hybrids.
    Smukowski Heil C; Patterson K; Hickey AS; Alcantara E; Dunham MJ
    Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33595639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens.
    Samarasinghe H; You M; Jenkinson TS; Xu J; James TY
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31963231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.