These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32065915)

  • 1. CuCo
    Chen S; Liu X; Gao S; Chen Y; Rao L; Yao Y; Wu Z
    Environ Res; 2020 Apr; 183():109245. PubMed ID: 32065915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice husk biochar modified-CuCo
    Xie K; Han R; Sun P; Wang H; Fang Y; Zhai Z; Ma D; Liu H
    RSC Adv; 2021 Dec; 11(62):39467-39475. PubMed ID: 35492460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation.
    Chen L; Huang Y; Zhou M; Xing K; Lv W; Wang W; Chen H; Yao Y
    Chemosphere; 2020 Jul; 250():126300. PubMed ID: 32113094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus-doped carbon fibers as an efficient metal-free bifunctional catalyst for removing sulfamethoxazole and chromium (VI).
    Liu X; Rao L; Yao Y; Chen H
    Chemosphere; 2020 May; 246():125783. PubMed ID: 31918096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe-based carbonitride as Fenton-like catalyst for the elimination of organic contaminants.
    Shen Z; Fan L; Yang S; Yao Y; Chen H; Wang W
    Environ Res; 2021 Jul; 198():110486. PubMed ID: 33217434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals.
    Guo F; Wang K; Lu J; Chen J; Dong X; Xia D; Zhang A; Wang Q
    Chemosphere; 2019 Mar; 218():1071-1081. PubMed ID: 30609486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Co-based carbon materials derived from core-shell metal-organic frameworks for organic contaminant elimination with peroxymonosulfates.
    Xia Y; He J; Chen S; Gao S; Wang W; Lu P; Yao Y
    Dalton Trans; 2019 Jul; 48(27):10251-10259. PubMed ID: 31199414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adding CuCo
    Liu Z; Wang S; Ma W; Wang J; Xu H; Li K; Huang T; Ma J; Wen G
    Chemosphere; 2022 Jan; 286(Pt 2):131829. PubMed ID: 34426122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into performance and mechanism of ZnO/CuCo
    Li J; Cheng X; Zhang H; Gou J; Zhang X; Wu D; Dionysiou DD
    J Hazard Mater; 2023 Apr; 448():130946. PubMed ID: 36860075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxymonosulfate activation by walnut shell activated carbon supported nano zero-valent iron for the degradation of tetracycline: Performance, degradation pathway and mechanism.
    Duan P; Kong F; Fu X; Han Z; Sun G; Yu Z; Wang S; Cui Y
    Environ Res; 2024 Mar; 245():117971. PubMed ID: 38145740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: Performance and mechanism.
    Peng H; Yang JE; Fu ML; Yuan B
    Chemosphere; 2020 Mar; 242():125140. PubMed ID: 31669997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous catalytic oxidation degradation of BPAF by peroxymonosulfate active with manganic manganous oxide: Mineralization, mechanism and degradation pathways.
    Wang N; Zhang J; Zhang Y; Zhou P; Wang J; Liu Y
    Chemosphere; 2021 Jan; 263():127950. PubMed ID: 33297019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe
    Guo S; Liu M; You L; Cheng G; Li J; Zhou K
    Chemosphere; 2021 Sep; 279():130482. PubMed ID: 33865164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyaniline: A New Metal-Free Catalyst for Peroxymonosulfate Activation with Highly Efficient and Durable Removal of Organic Pollutants.
    Sun B; Ma W; Wang N; Xu P; Zhang L; Wang B; Zhao H; Lin KA; Du Y
    Environ Sci Technol; 2019 Aug; 53(16):9771-9780. PubMed ID: 31314497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcined CoAl-layered double hydroxide as a heterogeneous catalyst for the degradation of acetaminophen and rhodamine B: activity, stability, and mechanism.
    Zhu J; Zhu Z; Zhang H; Lu H; Qiu Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33329-33340. PubMed ID: 31520393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous activation of peroxymonosulfate by a biochar-supported Co
    Xu H; Zhang Y; Li J; Hao Q; Li X; Liu F
    Environ Pollut; 2020 Feb; 257():113610. PubMed ID: 31761599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe
    Zhang Q; Sun X; Dang Y; Zhu JJ; Zhao Y; Xu X; Zhou Y
    J Hazard Mater; 2022 Feb; 424(Pt D):127651. PubMed ID: 34772555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered biochar derived from food waste digestate for activation of peroxymonosulfate to remove organic pollutants.
    Huang S; Wang T; Chen K; Mei M; Liu J; Li J
    Waste Manag; 2020 Apr; 107():211-218. PubMed ID: 32305778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge interface microenvironment regulation of CoOOH/commercial activated carbon nano-hybrids enabling PMS activation for degrading ciprofloxacin.
    Zhang Z; Zhan X; Hong B; Wang X; Tang P; Ding Y; Xia Y; Zeng Y
    J Colloid Interface Sci; 2024 Jun; 663():909-918. PubMed ID: 38447405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation.
    Yu R; Zhao J; Zhao Z; Cui F
    J Hazard Mater; 2020 May; 390():121998. PubMed ID: 32044618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.