These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32065996)
1. Effect of UV radiation on the structure of graphene oxide in water and its impact on cytotoxicity and As(III) adsorption. Gallegos-Pérez WR; Reynosa-Martínez AC; Soto-Ortiz C; Angélica Álvarez-Lemus M; Barroso-Flores J; García Montalvo V; López-Honorato E Chemosphere; 2020 Jun; 249():126160. PubMed ID: 32065996 [TBL] [Abstract][Full Text] [Related]
2. Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study. Gao Y; Ren X; Zhang X; Chen C Environ Pollut; 2019 Aug; 251():821-829. PubMed ID: 31125812 [TBL] [Abstract][Full Text] [Related]
3. Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chen ML; Sun Y; Huo CB; Liu C; Wang JH Chemosphere; 2015 Jul; 130():52-8. PubMed ID: 25800270 [TBL] [Abstract][Full Text] [Related]
4. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution. He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096 [TBL] [Abstract][Full Text] [Related]
5. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Khan A; Wang J; Li J; Wang X; Chen Z; Alsaedi A; Hayat T; Chen Y; Wang X Environ Sci Pollut Res Int; 2017 Mar; 24(9):7938-7958. PubMed ID: 28111721 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of Ca Terracciano A; Zhang J; Christodoulatos C; Wu F; Meng X J Environ Sci (China); 2017 Jul; 57():8-14. PubMed ID: 28647268 [TBL] [Abstract][Full Text] [Related]
7. How UV radiation and pH alternation impact graphene oxide mediated environmental toxicant adsorption and resulting safety characteristics - A toxicology study beyond a classic carrier effect. Ding X; Ma Y; Liu Q; Pang Y; Cao Y; Zhang T Chemosphere; 2022 Aug; 300():134627. PubMed ID: 35439484 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of Cd and Ni from water by graphene oxide and graphene oxide-almond shell composite. Yari Moghaddam N; Lorestani B; Cheraghi M; Jamehbozorgi S Water Environ Res; 2019 Jun; 91(6):475-482. PubMed ID: 30698871 [TBL] [Abstract][Full Text] [Related]
9. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. Chandra V; Park J; Chun Y; Lee JW; Hwang IC; Kim KS ACS Nano; 2010 Jul; 4(7):3979-86. PubMed ID: 20552997 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of phenanthrene and 1-naphthol to graphene oxide and Wang F; Jia Z; Su W; Shang Y; Wang ZL Environ Sci Pollut Res Int; 2019 Apr; 26(11):11062-11073. PubMed ID: 30788701 [TBL] [Abstract][Full Text] [Related]
11. Effect of the degree of oxidation of graphene oxide on As(III) adsorption. Reynosa-Martínez AC; Tovar GN; Gallegos WR; Rodríguez-Meléndez H; Torres-Cadena R; Mondragón-Solórzano G; Barroso-Flores J; Alvarez-Lemus MA; Montalvo VG; López-Honorato E J Hazard Mater; 2020 Feb; 384():121440. PubMed ID: 31776081 [TBL] [Abstract][Full Text] [Related]
12. Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water. Catherine HN; Ou MH; Manu B; Shih YH Sci Total Environ; 2018 Sep; 635():629-638. PubMed ID: 29679835 [TBL] [Abstract][Full Text] [Related]
13. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V). Babaeivelni K; Khodadoust AP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):277-88. PubMed ID: 26745439 [TBL] [Abstract][Full Text] [Related]
14. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Vadahanambi S; Lee SH; Kim WJ; Oh IK Environ Sci Technol; 2013 Sep; 47(18):10510-7. PubMed ID: 23947834 [TBL] [Abstract][Full Text] [Related]
15. Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. Lingamdinne LP; Lee S; Choi JS; Lebaka VR; Durbaka VRP; Koduru JR J Hazard Mater; 2021 Jan; 402():123882. PubMed ID: 33254822 [TBL] [Abstract][Full Text] [Related]
16. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Chen H; Gao B; Li H J Hazard Mater; 2015 Jan; 282():201-7. PubMed ID: 24755346 [TBL] [Abstract][Full Text] [Related]
17. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Ma Z; Liu D; Zhu Y; Li Z; Li Z; Tian H; Liu H Carbohydr Polym; 2016 Jun; 144():230-7. PubMed ID: 27083813 [TBL] [Abstract][Full Text] [Related]
18. Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution. Ye S; Jin W; Huang Q; Hu Y; Li Y; Li J; Li B Int J Biol Macromol; 2017 Jan; 94(Pt A):527-534. PubMed ID: 27771411 [TBL] [Abstract][Full Text] [Related]
19. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Nam SW; Jung C; Li H; Yu M; Flora JR; Boateng LK; Her N; Zoh KD; Yoon Y Chemosphere; 2015 Oct; 136():20-6. PubMed ID: 25911329 [TBL] [Abstract][Full Text] [Related]
20. Preparation of functionalized graphene oxide and its application as a nanoadsorbent for Hg(2+) removal from aqueous solution. Aghdam K; Panahi HA; Alaei E; Hasani AH; Moniri E Environ Monit Assess; 2016 Apr; 188(4):223. PubMed ID: 26969155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]