BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 32066043)

  • 21. MicroRNA-22 promoted osteogenic differentiation of valvular interstitial cells by inhibiting CAB39 expression during aortic valve calcification.
    Yang F; Liu S; Gu Y; Yan Y; Ding X; Zou L; Xu Z; Wang G
    Cell Mol Life Sci; 2022 Feb; 79(3):146. PubMed ID: 35190902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apelin attenuates the osteoblastic differentiation of aortic valve interstitial cells via the ERK and PI3-K/Akt pathways.
    Yuan ZS; Zhou YZ; Liao XB; Luo JW; Shen KJ; Hu YR; Gu L; Li JM; Tan CM; Chen HM; Zhou XM
    Amino Acids; 2015 Dec; 47(12):2475-82. PubMed ID: 26142632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PALMD regulates aortic valve calcification via altered glycolysis and NF-κB-mediated inflammation.
    Wang S; Yu H; Gao J; Chen J; He P; Zhong H; Tan X; Staines KA; Macrae VE; Fu X; Jiang L; Zhu D
    J Biol Chem; 2022 May; 298(5):101887. PubMed ID: 35367413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
    Jenke A; Kistner J; Saradar S; Chekhoeva A; Yazdanyar M; Bergmann AK; Rötepohl MV; Lichtenberg A; Akhyari P
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1123-H1141. PubMed ID: 32986963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knockdown of estrogen-related receptor α inhibits valve interstitial cell calcification in vitro by regulating heme oxygenase 1.
    Hu W; Wu R; Gao C; Liu F; Zeng Z; Zhu Q; Chen J; Cheng S; Yu K; Qian Y; Zhao J; Zhong S; Li Q; Wang L; Liu X; Wang J
    FASEB J; 2021 Feb; 35(2):e21183. PubMed ID: 33184978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indoxyl-sulfate activation of the AhR- NF-κB pathway promotes interleukin-6 secretion and the subsequent osteogenic differentiation of human valvular interstitial cells from the aortic valve.
    Candellier A; Issa N; Grissi M; Brouette T; Avondo C; Gomila C; Blot G; Gubler B; Touati G; Bennis Y; Caus T; Brazier M; Choukroun G; Tribouilloy C; Kamel S; Boudot C; Hénaut L;
    J Mol Cell Cardiol; 2023 Jun; 179():18-29. PubMed ID: 36967106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcification Induced by Type I Interferon in Human Aortic Valve Interstitial Cells Is Larger in Males and Blunted by a Janus Kinase Inhibitor.
    Parra-Izquierdo I; Castaños-Mollor I; López J; Gómez C; San Román JA; Sánchez Crespo M; García-Rodríguez C
    Arterioscler Thromb Vasc Biol; 2018 Sep; 38(9):2148-2159. PubMed ID: 30026273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells.
    Wang B; Li F; Zhang C; Wei G; Liao P; Dong N
    J Thorac Cardiovasc Surg; 2016 Jan; 151(1):255-62. PubMed ID: 26515875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification.
    Gomez-Stallons MV; Wirrig-Schwendeman EE; Hassel KR; Conway SJ; Yutzey KE
    Arterioscler Thromb Vasc Biol; 2016 Jul; 36(7):1398-405. PubMed ID: 27199449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New calcification model for intact murine aortic valves.
    Kruithof BPT; van de Pol V; Los T; Lodder K; Mousavi Gourabi B; DeRuiter MC; Goumans MJ; Ajmone Marsan N
    J Mol Cell Cardiol; 2021 Jul; 156():95-104. PubMed ID: 33744308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation.
    Hjortnaes J; Goettsch C; Hutcheson JD; Camci-Unal G; Lax L; Scherer K; Body S; Schoen FJ; Kluin J; Khademhosseini A; Aikawa E
    J Mol Cell Cardiol; 2016 May; 94():13-20. PubMed ID: 26996755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dipeptidyl Peptidase-4 Induces Aortic Valve Calcification by Inhibiting Insulin-Like Growth Factor-1 Signaling in Valvular Interstitial Cells.
    Choi B; Lee S; Kim SM; Lee EJ; Lee SR; Kim DH; Jang JY; Kang SW; Lee KU; Chang EJ; Song JK
    Circulation; 2017 May; 135(20):1935-1950. PubMed ID: 28179397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endoplasmic reticulum stress participates in aortic valve calcification in hypercholesterolemic animals.
    Cai Z; Li F; Gong W; Liu W; Duan Q; Chen C; Ni L; Xia Y; Cianflone K; Dong N; Wang DW
    Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2345-54. PubMed ID: 23928865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway.
    Fu Z; Li F; Jia L; Su S; Wang Y; Cai Z; Xiang M
    J Thorac Cardiovasc Surg; 2019 Aug; 158(2):408-417.e2. PubMed ID: 30579537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MiR-138-5p targets RUNX2 to inhibit osteogenic differentiation of aortic valve interstitial cells via Wnt/β-catenin signaling pathway.
    Yan F; Huo Q; Zhang W; Wu T; Dilimulati D; Shi L
    BMC Cardiovasc Disord; 2022 Feb; 22(1):24. PubMed ID: 35109802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-κB and ERK1/2 pathways.
    Zhan Q; Song R; Zeng Q; Yao Q; Ao L; Xu D; Fullerton DA; Meng X
    Int J Biol Sci; 2015; 11(4):482-93. PubMed ID: 25798067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aldo-keto reductase family 1 member B induces aortic valve calcification by activating hippo signaling in valvular interstitial cells.
    Gao C; Hu W; Liu F; Zeng Z; Zhu Q; Fan J; Chen J; Cheng S; Yu K; Qian Y; Ren T; Zhao J; Liu X; Wang J
    J Mol Cell Cardiol; 2021 Jan; 150():54-64. PubMed ID: 33045251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. End stage renal disease-induced hypercalcemia may promote aortic valve calcification via Annexin VI enrichment of valve interstitial cell derived-matrix vesicles.
    Cui L; Rashdan NA; Zhu D; Milne EM; Ajuh P; Milne G; Helfrich MH; Lim K; Prasad S; Lerman DA; Vesey AT; Dweck MR; Jenkins WS; Newby DE; Farquharson C; Macrae VE
    J Cell Physiol; 2017 Nov; 232(11):2985-2995. PubMed ID: 28369848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NFκB (Nuclear Factor κ-Light-Chain Enhancer of Activated B Cells) Activity Regulates Cell-Type-Specific and Context-Specific Susceptibility to Calcification in the Aortic Valve.
    Gee T; Farrar E; Wang Y; Wu B; Hsu K; Zhou B; Butcher J
    Arterioscler Thromb Vasc Biol; 2020 Mar; 40(3):638-655. PubMed ID: 31893948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Natural Product Andrographolide Ameliorates Calcific Aortic Valve Disease by Regulating the Proliferation of Valve Interstitial Cells
    Huang Y; Liu M; Liu C; Dong N; Chen L
    Front Pharmacol; 2022; 13():871748. PubMed ID: 35571082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.