These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32066123)

  • 1. Spontaneous dewetting transition of nanodroplets on nanopillared surface.
    Wang S; Wang C; Peng Z; Chen S
    Nanotechnology; 2020 May; 31(22):225502. PubMed ID: 32066123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface.
    Koishi T; Yasuoka K; Zeng XC
    Langmuir; 2017 Oct; 33(39):10184-10192. PubMed ID: 28876073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dewetting properties of metallic liquid film on nanopillared graphene.
    Li X; He Y; Wang Y; Dong J; Li H
    Sci Rep; 2014 Feb; 4():3938. PubMed ID: 24487279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Condensation of droplets on nanopillared hydrophobic substrates.
    Guo Q; Liu Y; Jiang G; Zhang X
    Soft Matter; 2014 Feb; 10(8):1182-8. PubMed ID: 24652083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous dewetting of a hydrophobic micro-structured surface.
    Li X; Li J; Peng Z; Chen S
    J Phys Condens Matter; 2019 Jul; 31(29):295001. PubMed ID: 30986775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.
    Lv C; Hao P; Zhang X; He F
    ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study.
    Li H; Yan T; Fichthorn KA; Yu S
    Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study.
    Zhang A; Cui K; Tian Y; Zhang B; Wang T; He X
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets.
    Xie FF; Lu G; Wang XD; Wang BB
    Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dewetting from Amphiphilic Minichannel Surfaces during Condensation.
    Winter RL; McCarthy M
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7815-7825. PubMed ID: 31944655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement Dynamics of Nanodroplets between Two Surfaces: Effects of Wettability and Electric Field.
    Liu D; Cao Q; Piao Z; Li L
    Chemphyschem; 2022 Dec; 23(24):e202200184. PubMed ID: 35986551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of nanodroplets on cone-textured surfaces.
    Liu H; Zhang J; Luo J; Wen D
    Phys Rev E; 2023 Jun; 107(6-2):065101. PubMed ID: 37464703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces.
    Lundgren M; Allan NL; Cosgrove T
    Langmuir; 2007 Jan; 23(3):1187-94. PubMed ID: 17241031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
    Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP
    ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study.
    Wang J; Chen S; Chen D
    Phys Chem Chem Phys; 2015 Nov; 17(45):30533-9. PubMed ID: 26524012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces.
    Xie FF; Lu G; Wang XD; Wang DQ
    Langmuir; 2018 Sep; 34(37):11195-11203. PubMed ID: 30133297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.