These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32066127)

  • 1. Nucleation and growth of metal-catalyzed silicon nanowires under plasma.
    Hývl M; Müller M; Stuchlíková TH; Stuchlík J; Šilhavík M; Kočka J; Fejfar A; Červenka J
    Nanotechnology; 2020 May; 31(22):225601. PubMed ID: 32066127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process.
    Ishiyama T; Nakagawa S; Wakamatsu T
    Sci Rep; 2016 Jul; 6():30608. PubMed ID: 27465800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM
    Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxial insertion of gold silicide nanodisks during the growth of silicon nanowires.
    Um HD; Jee SW; Park KT; Jung JY; Guo Z; Lee JH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6118-21. PubMed ID: 22121669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.
    Tang W; Picraux ST; Huang JY; Liu X; Tu KN; Dayeh SA
    Nano Lett; 2013; 13(12):6009-15. PubMed ID: 24274698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of silicon oxide nanowires embedded with Au nanoparticle or Au nanowire: its use as template to hollow silica nanotube.
    Chung SY; Chun JH; Kim DE
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5555-7. PubMed ID: 19198497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth.
    Pinion CW; Hill DJ; Christesen JD; McBride JR; Cahoon JF
    J Phys Chem Lett; 2016 Oct; 7(20):4236-4242. PubMed ID: 27717285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
    Lee HY; Shen TH; Hu CY; Tsai YY; Wen CY
    Nano Lett; 2017 Dec; 17(12):7494-7499. PubMed ID: 29185770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature.
    Adhikari H; Marshall AF; Goldthorpe IA; Chidsey CE; McIntyre PC
    ACS Nano; 2007 Dec; 1(5):415-22. PubMed ID: 19206662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mechanism of Ni-Assisted GaN Nanowire Growth.
    Maliakkal CB; Hatui N; Bapat RD; Chalke BA; Rahman AA; Bhattacharya A
    Nano Lett; 2016 Dec; 16(12):7632-7638. PubMed ID: 27960500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm.
    Puglisi RA; Bongiorno C; Caccamo S; Fazio E; Mannino G; Neri F; Scalese S; Spucches D; La Magna A
    ACS Omega; 2019 Nov; 4(19):17967-17971. PubMed ID: 31720500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of heterojunctions in Si-Ge alloy nanowires by altering AuGeSi eutectic composition using an approach based on thermal oxidation.
    Sun YT; Lee HY; Wang IT; Wen CY
    Nanotechnology; 2019 Jul; 30(28):284002. PubMed ID: 30913543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.
    Poinern GE; Ng YJ; Fawcett D
    J Colloid Interface Sci; 2010 Dec; 352(2):259-64. PubMed ID: 20887996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stages in the catalyst-free InP nanowire growth on silicon (100) by metal organic chemical vapor deposition.
    Miao G; Zhang D
    Nanoscale Res Lett; 2012 Jun; 7(1):321. PubMed ID: 22716780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium.
    Kim H; Ren D; Farrell AC; Huffaker DL
    Nanotechnology; 2018 Feb; 29(8):085601. PubMed ID: 29300185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of droplet composition on the nucleation rate and morphology of vapor-liquid-solid GeSn nanowires.
    Hijazi H; Zeghouane M; Bassani F; Gentile P; Salem B; Dubrovskii VG
    Nanotechnology; 2020 Oct; 31(40):405602. PubMed ID: 32503017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.