These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32066937)

  • 1. Power generation from ambient humidity using protein nanowires.
    Liu X; Gao H; Ward JE; Liu X; Yin B; Fu T; Chen J; Lovley DR; Yao J
    Nature; 2020 Feb; 578(7796):550-554. PubMed ID: 32066937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting Electricity from Atmospheric Moisture by Engineering an Organic Acid Gradient in Paper.
    Yang L; Zhang L; Sun D
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53615-53626. PubMed ID: 36437545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode.
    Zhang Y; Yang T; Shang K; Guo F; Shang Y; Chang S; Cui L; Lu X; Jiang Z; Zhou J; Fu C; He QC
    Nat Commun; 2022 Jun; 13(1):3484. PubMed ID: 35710907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts.
    Sun Z; Feng L; Wen X; Wang L; Qin X; Yu J
    Mater Horiz; 2021 Aug; 8(8):2303-2309. PubMed ID: 34846434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generic Air-Gen Effect in Nanoporous Materials for Sustainable Energy Harvesting from Air Humidity.
    Liu X; Gao H; Sun L; Yao J
    Adv Mater; 2024 Mar; 36(12):e2300748. PubMed ID: 37144425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous and Continuous Actuators Driven by Fluctuations in Ambient Humidity for Energy-Harvesting Applications.
    Wang Q; Wu Z; Li J; Wei J; Guo J; Yin M
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38972-38980. PubMed ID: 35994317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Biobased Hydrovoltaic-Photovoltaic Electricity Generators for All-Weather Energy Harvesting.
    Ren G; Hu Q; Ye J; Hu A; Lü J; Zhou S
    Research (Wash D C); 2022; 2022():9873203. PubMed ID: 36082209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation.
    Tan J; Fang S; Zhang Z; Yin J; Li L; Wang X; Guo W
    Nat Commun; 2022 Jun; 13(1):3643. PubMed ID: 35752621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power Generation from Moisture Fluctuations Using Polyvinyl Alcohol-Wrapped Dopamine/Polyvinylidene Difluoride Nanofibers.
    Li T; Jin F; Qu M; Yang F; Zhang J; Yuan T; Dong W; Zheng J; Wang T; Feng ZQ
    Small; 2021 Sep; 17(36):e2102550. PubMed ID: 34314097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting.
    Li T; Wu M; Xu J; Du R; Yan T; Wang P; Bai Z; Wang R; Wang S
    Nat Commun; 2022 Nov; 13(1):6771. PubMed ID: 36351950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation.
    Shen D; Xiao M; Zou G; Liu L; Duley WW; Zhou YN
    Adv Mater; 2018 May; 30(18):e1705925. PubMed ID: 29573287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications.
    Shen D; Duley WW; Peng P; Xiao M; Feng J; Liu L; Zou G; Zhou YN
    Adv Mater; 2020 Dec; 32(52):e2003722. PubMed ID: 33185944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moisture-Driven Power Generation for Multifunctional Flexible Sensing Systems.
    Li L; Chen Z; Hao M; Wang S; Sun F; Zhao Z; Zhang T
    Nano Lett; 2019 Aug; 19(8):5544-5552. PubMed ID: 31348665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sunlight-Coordinated High-Performance Moisture Power in Natural Conditions.
    Bai J; Huang Y; Wang H; Guang T; Liao Q; Cheng H; Deng S; Li Q; Shuai Z; Qu L
    Adv Mater; 2022 Mar; 34(10):e2103897. PubMed ID: 34965320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Energy Harvesting from Ubiquitous Humidity Gradients using Liquid-Infused Nanofluidics.
    Zheng S; Tang J; Lv D; Wang M; Yang X; Hou C; Yi B; Lu G; Hao R; Wang M; Wang Y; He H; Yao X
    Adv Mater; 2022 Jan; 34(4):e2106410. PubMed ID: 34715720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hygroscopic Janus Heterojunction for Continuous Moisture-Triggered Electricity Generators.
    Wu Y; Shao B; Song Z; Li Y; Zou Y; Chen X; Di J; Song T; Wang Y; Sun B
    ACS Appl Mater Interfaces; 2022 May; 14(17):19569-19578. PubMed ID: 35442031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems.
    Cao Y; Figueroa J; Pastrana JJ; Li W; Chen Z; Wang ZL; Sepúlveda N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17400-17409. PubMed ID: 31002218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.
    Zhu G; Zhou YS; Bai P; Meng XS; Jing Q; Chen J; Wang ZL
    Adv Mater; 2014 Jun; 26(23):3788-96. PubMed ID: 24692147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.