These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32066956)
1. Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Machado RAR; Thönen L; Arce CCM; Theepan V; Prada F; Wüthrich D; Robert CAM; Vogiatzaki E; Shi YM; Schaeren OP; Notter M; Bruggmann R; Hapfelmeier S; Bode HB; Erb M Nat Biotechnol; 2020 May; 38(5):600-608. PubMed ID: 32066956 [TBL] [Abstract][Full Text] [Related]
2. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Bruno P; Machado RAR; Glauser G; Köhler A; Campos-Herrera R; Bernal J; Toepfer S; Erb M; Robert CAM; Arce CCM; Turlings TCJ Sci Rep; 2020 May; 10(1):8257. PubMed ID: 32427834 [TBL] [Abstract][Full Text] [Related]
3. Plant defense resistance in natural enemies of a specialist insect herbivore. Zhang X; van Doan C; Arce CCM; Hu L; Gruenig S; Parisod C; Hibbard BE; Hervé MR; Nielson C; Robert CAM; Machado RAR; Erb M Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23174-23181. PubMed ID: 31659056 [TBL] [Abstract][Full Text] [Related]
4. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. Robert CA; Zhang X; Machado RA; Schirmer S; Lori M; Mateo P; Erb M; Gershenzon J Elife; 2017 Nov; 6():. PubMed ID: 29171835 [TBL] [Abstract][Full Text] [Related]
5. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations. Devos Y; Meihls LN; Kiss J; Hibbard BE Transgenic Res; 2013 Apr; 22(2):269-99. PubMed ID: 23011587 [TBL] [Abstract][Full Text] [Related]
6. Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Jaffuel G; Imperiali N; Shelby K; Campos-Herrera R; Geisert R; Maurhofer M; Loper J; Keel C; Turlings TCJ; Hibbard BE Sci Rep; 2019 Feb; 9(1):3127. PubMed ID: 30816250 [TBL] [Abstract][Full Text] [Related]
7. Indirect Root Defenses Cause Induced Fitness Costs in Bt-Resistant Western Corn Rootworm. Hiltpold I; Hibbard BE J Econ Entomol; 2018 Sep; 111(5):2349-2358. PubMed ID: 30085164 [TBL] [Abstract][Full Text] [Related]
8. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. Gassmann AJ J Invertebr Pathol; 2012 Jul; 110(3):287-93. PubMed ID: 22537837 [TBL] [Abstract][Full Text] [Related]
9. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
10. A study on Xenorhabdus and Photorhabdus isolates from Northeastern Thailand: Identification, antibacterial activity, and association with entomopathogenic nematode hosts. Yimthin T; Fukruksa C; Muangpat P; Dumidae A; Wattanachaiyingcharoen W; Vitta A; Thanwisai A PLoS One; 2021; 16(8):e0255943. PubMed ID: 34383819 [TBL] [Abstract][Full Text] [Related]
11. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Hiltpold I; Baroni M; Toepfer S; Kuhlmann U; Turlings TC J Exp Biol; 2010 Jul; 213(Pt 14):2417-23. PubMed ID: 20581271 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the Field Efficacy of Modic Š; Žigon P; Kolmanič A; Trdan S; Razinger J Insects; 2020 Mar; 11(3):. PubMed ID: 32213940 [TBL] [Abstract][Full Text] [Related]
13. Spatial variation in western corn rootworm (Coleoptera: Chrysomelidae) susceptibility to Cry3 toxins in Nebraska. Reinders JD; Hitt BD; Stroup WW; French BW; Meinke LJ PLoS One; 2018; 13(11):e0208266. PubMed ID: 30496268 [TBL] [Abstract][Full Text] [Related]
14. Enhancing mass production of Heterorhabditis bacteriophora: influence of different bacterial symbionts (Photorhabdus spp.) and inoculum age on dauer juvenile recovery. Wang Z; Dhakal M; Vandenbossche B; Dörfler V; Barg M; Strauch O; Ehlers RU; Molina C World J Microbiol Biotechnol; 2023 Nov; 40(1):13. PubMed ID: 37953398 [TBL] [Abstract][Full Text] [Related]
15. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Gassmann AJ; Shrestha RB; Kropf AL; St Clair CR; Brenizer BD Pest Manag Sci; 2020 Jan; 76(1):268-276. PubMed ID: 31207042 [TBL] [Abstract][Full Text] [Related]
16. The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. Clarke DJ Adv Appl Microbiol; 2014; 88():1-29. PubMed ID: 24767424 [TBL] [Abstract][Full Text] [Related]
17. Photorhabdus luminescens LN2 requires rpoS for nematicidal activity and nematode development. Qiu X; Wu C; Cao L; Ehlers RU; Han R FEMS Microbiol Lett; 2016 Mar; 363(6):. PubMed ID: 26884480 [TBL] [Abstract][Full Text] [Related]
18. Response of three cyprinid fish species to the Scavenger Deterrent Factor produced by the mutualistic bacteria associated with entomopathogenic nematodes. Raja RK; Aiswarya D; Gulcu B; Raja M; Perumal P; Sivaramakrishnan S; Kaya HK; Hazir S J Invertebr Pathol; 2017 Feb; 143():40-49. PubMed ID: 27908637 [TBL] [Abstract][Full Text] [Related]
19. The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Regaiolo A; Dominelli N; Andresen K; Heermann R Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591378 [TBL] [Abstract][Full Text] [Related]
20. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Ogier JC; Akhurst R; Boemare N; Gaudriault S Trends Microbiol; 2023 Jun; 31(6):629-643. PubMed ID: 36801155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]